Search results for: Magnetic Flux
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 637

Search results for: Magnetic Flux

187 Effect of Curing Profile to Eliminate the Voids / Black Dots Formation in Underfill Epoxy for Hi-CTE Flip Chip Packaging

Authors: Zainudin Kornain, Azman Jalar, Rozaidi Rasid, Fong Chee Seng

Abstract:

Void formation in underfill is considered as failure in flip chip manufacturing process. Void formation possibly caused by several factors such as poor soldering and flux residue during die attach process, void entrapment due moisture contamination, dispense pattern process and setting up the curing process. This paper presents the comparison of single step and two steps curing profile towards the void and black dots formation in underfill for Hi-CTE Flip Chip Ceramic Ball Grid Array Package (FC-CBGA). Statistic analysis was conducted to analyze how different factors such as wafer lot, sawing technique, underfill fillet height and curing profile recipe were affected the formation of voids and black dots. A C-Mode Scanning Aqoustic Microscopy (C-SAM) was used to scan the total count of voids and black dots. It was shown that the 2 steps curing profile provided solution for void elimination and black dots in underfill after curing process.

Keywords: black dots formation, curing profile, FC-CBGA, underfill, void formation,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4025
186 Agrowaste: Phytosterol from Durian Seed

Authors: D. Mohd Nazrul Hisham, J. Mohd Lip, R. Suri, H. Mohamed Shafit, Z.Kharis, K. Shazlin, A. Normah, M.F. Nurul Nabilah

Abstract:

Presence of phytosterol compound in Durian seed (Durio zibethinus) or known as King of fruits has been discovered from screening work using reagent test. Further analysis work has been carried out using mass spectrometer in order to support the priliminary finding. Isolation and purification of the major phytosterol has been carried out using an open column chromatography. The separation was monitored using thin layer chromatography (TLC). Major isolated compounds and purified phytosterol were identified using mass spectrometer and nuclear magnetic resonance (NMR). This novel finding could promote utilization of durian seeds as a functional ingredient in food products through production of standardized extract based on phytosterol content.

Keywords: Agrowaste, durian, seed, phytosterol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2876
185 Vibration Damping of High-Chromium Ferromagnetic Steel

Authors: Satish BM, Girish BM , Mahesh K

Abstract:

The aim of the present work is to study the effect of annealing on the vibration damping capacity of high-chromium (16%) ferromagnetic steel. The alloys were prepared from raw materials of 99.9% purity melted in a high frequency induction furnace under high vacuum. The samples were heat-treated in vacuum at various temperatures (800 to 1200ºC) for 1 hour followed by slow cooling (120ºC/h). The inverted torsional pendulum method was used to evaluate the vibration damping capacity. The results indicated that the vibration damping capacity of the alloys is influenced by annealing and there exists a critical annealing temperature after 1000ºC. The damping capacity increases quickly below the critical temperature since the magnetic domains move more easily.

Keywords: Vibration, Damping, Ferromagnetic, Steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
184 Exciting Voltage Control for Efficiency Maximization for 2-D Omni-Directional Wireless Power Transfer Systems

Authors: Masato Sasaki, Masayoshi Yamamoto

Abstract:

The majority of wireless power transfer (WPT) systems transfer power in a directional manner. This paper describes a discrete exciting voltage control technique for WPT via magnetic resonant coupling with two orthogonal transmitter coils (2D omni-directional WPT system) which can maximize the power transfer efficiency in response to the change of coupling status. The theory allows the equations of the efficiency of the system to be determined at all the rate of the mutual inductance. The calculated results are included to confirm the advantage to one directional WPT system and the validity of the theory and the equations.

Keywords: Wireless power transfer, orthogonal, omni-directional, efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897
183 Numerical Investigation of a Slender Delta Wing in Combined Force-Pitch and Free-Roll

Authors: Yang Xiaoliang, Liu Wei, Wang Hongbo, Zhao Yunfei

Abstract:

Numerical investigation of the characteristics of an 80° delta wing in combined force-pitch and free-roll is presented. The implicit, upwind, flux-difference splitting, finite volume scheme and the second-order-accurate finite difference scheme are employed to solve the flow governing equations and Euler rigid-body dynamics equations, respectively. The characteristics of the delta wing in combined free-roll and large amplitude force-pitch is obtained numerically and shows a well agreement with experimental data qualitatively. The motion in combined force-pitch and free-roll significantly reduces the lift force and transverse stabilities of the delta wing, which is closely related to the flying safety. Investigations on sensitive factors indicate that the roll-axis moment of inertia and the structural damping have great influence on the frequency and amplitude, respectively. Moreover, the turbulence model is considered as an influencing factor in the investigation.

Keywords: combined force-pitch and free-roll, numericalsimulation, sensitive factors, slender delta wing, wing rock

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
182 A Method to Saturation Modeling of Synchronous Machines in d-q Axes

Authors: Mohamed A. Khlifi, Badr M. Alshammari

Abstract:

This paper discusses the general methods to saturation in the steady-state, two axis (d & q) frame models of synchronous machines. In particular, the important role of the magnetic coupling between the d-q axes (cross-magnetizing phenomenon), is demonstrated. For that purpose, distinct methods of saturation modeling of dumper synchronous machine with cross-saturation are identified, and detailed models synthesis in d-q axes. A number of models are given in the final developed form. The procedure and the novel models are verified by a critical application to prove the validity of the method and the equivalence between all developed models is reported. Advantages of some of the models over the existing ones and their applicability are discussed.

Keywords: Cross-magnetizing, models synthesis, synchronous machine, saturated modeling, state-space vectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192
181 A Novel Approach to EMABS and Comparison with ABS

Authors: Mehrdad N. Khajavi, Abbas Hosseini, N.Bani Mostafa

Abstract:

In this paper two different Antilock braking system (ABS) are simulated and compared. One is the ordinary hydraulic ABS system which we call it ABS and the other is Electromagnetic Antilock braking system which is called (EMABS) the basis of performance of an EMABS is based upon Electromagnetic force. In this system there is no need to use servo hydraulic booster which are used in ABS system. In EMABS to generate the desired force we have use a magnetic relay which works with an input voltage through an air gap (g). The generated force will be amplified by the relay arm, and is applied to the brake shoes and thus the braking torque is generated. The braking torque is proportional to the applied electrical voltage E. to adjust the braking torque it is only necessary to regulate the electrical voltage E which is very faster and has a much smaller time constant T than the ABS system. The simulations of these two different ABS systems are done with MATLAB/SIMULINK software and the superiority of the EMABS has been shown.

Keywords: ABS, EMABS, ECU

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339
180 Second Order Sliding Mode Observer Using MRAS Theory for Sensorless Control of Multiphase Induction Machine

Authors: Mohammad Jafarifar

Abstract:

This paper presents a speed estimation scheme based on second-order sliding-mode Super Twisting Algorithm (STA) and Model Reference Adaptive System (MRAS) estimation theory for Sensorless control of multiphase induction machine. A stator current observer is designed based on the STA, which is utilized to take the place of the reference voltage model of the standard MRAS algorithm. The observer is insensitive to the variation of rotor resistance and magnetizing inductance when the states arrive at the sliding mode. Derivatives of rotor flux are obtained and designed as the state of MRAS, thus eliminating the integration. Compared with the first-order sliding-mode speed estimator, the proposed scheme makes full use of the auxiliary sliding-mode surface, thus alleviating the chattering behavior without increasing the complexity. Simulation results show the robustness and effectiveness of the proposed scheme.

Keywords: Multiphase induction machine, field oriented control, sliding mode, super twisting algorithm, MRAS algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2252
179 Development of Synthetic Jet Air Blower for Air-breathing PEM Fuel Cell

Authors: Jongpil Choi, Eon-Soo Lee, Jae-Huk Jang, Young Ho Seo, Byeonghee Kim

Abstract:

This paper presents a synthetic jet air blower actuated by PZT for air blowing for air-breathing micro PEM fuel cell. The several factors to affect the performance of air-breathing PEM fuel cell such as air flow rate, opening ratio and cathode open type in the cathode side were studied. Especially, an air flow rate is critical condition to improve its performance. In this paper, we developed a synthetic jet air blower to supply a high stoichiometric air flow. The synthetic jet mechanism is a zero mass flux device that converts electrical energy into the momentum. The synthetic jet actuation is usually generated by a traditional PZT actuator, which consists of a small cylindrical cavity, in/outlet channel and PZT diaphragms. The flow rate of the fabricated synthetic jet air blower was 400cc/min at 550Hz and its power consumption was very low under 0.3W. The proposed air-breathing PEM fuel cell which installed synthetic jet air blower was higher performance and stability during continuous operation than the air-breathing fuel cell without auxiliary device to supply the air. The results showed that the maximum power density was 188mW/cm2 at 400mA/cm2. This maximum power density and durability were improved more than 40% and 20%, respectively.

Keywords: Air-breathing PEM fuel cell, Synthetic jet air blower, Opening ratio, Power consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
178 The Impact of Modeling Method of Moisture Emission from the Swimming Pool on the Accuracy of Numerical Calculations of Air Parameters in Ventilated Natatorium

Authors: Piotr Ciuman, Barbara Lipska

Abstract:

The aim of presented research was to improve numerical predictions of air parameters distribution in the actual natatorium by the selection of calculation formula of mass flux of moisture emitted from the pool. Selected correlation should ensure the best compliance of numerical results with the measurements' results of these parameters in the facility. The numerical model of the natatorium was developed, for which boundary conditions were prepared on the basis of measurements' results carried out in the actual facility. Numerical calculations were carried out with the use of ANSYS CFX software, with six formulas being implemented, which in various ways made the moisture emission dependent on water surface temperature and air parameters in the natatorium. The results of calculations with the use of these formulas were compared for air parameters' distributions: Specific humidity, velocity and temperature in the facility. For the selection of the best formula, numerical results of these parameters in occupied zone were validated by comparison with the measurements' results carried out at selected points of this zone.

Keywords: Experimental validation, indoor swimming pool, moisture emission, natatorium, numerical calculations, CFD, thermal and humidity conditions, ventilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
177 Nonlinear Slow Shear Alfven Waves in Electron- Positron-Ion Plasma Including Full Ion Dynamics

Authors: B. Ghosh, H. Sahoo, K. K. Mondal

Abstract:

Propagation of arbitrary amplitude nonlinear Alfven waves has been investigated in low but finite β electron-positron-ion plasma including full ion dynamics. Using Sagdeev pseudopotential method an energy integral equation has been derived. The Sagdeev potential has been calculated for different plasma parameters and it has been shown that inclusion of ion parallel motion along the magnetic field changes the nature of slow shear Alfven wave solitons from dip type to hump type. The effects of positron concentration, plasma-β and obliqueness of the wave propagation on the solitary wave structure have also been examined.

Keywords: Alfven waves, Sagdeev potential, Solitary waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
176 Modified Genome-Scale Metabolic Model of Escherichia coli by Adding Hyaluronic Acid Biosynthesis-Related Enzymes (GLMU2 and HYAD) from Pasteurella multocida

Authors: P. Pasomboon, P. Chumnanpuen, T. E-kobon

Abstract:

Hyaluronic acid (HA) consists of linear heteropolysaccharides repeat of D-glucuronic acid and N-acetyl-D-glucosamine. HA has various useful properties to maintain skin elasticity and moisture, reduce inflammation, and lubricate the movement of various body parts without causing immunogenic allergy. HA can be found in several animal tissues as well as in the capsule component of some bacteria including Pasteurella multocida. This study aimed to modify a genome-scale metabolic model of Escherichia coli using computational simulation and flux analysis methods to predict HA productivity under different carbon sources and nitrogen supplement by the addition of two enzymes (GLMU2 and HYAD) from P. multocida to improve the HA production under the specified amount of carbon sources and nitrogen supplements. Result revealed that threonine and aspartate supplement raised the HA production by 12.186%. Our analyses proposed the genome-scale metabolic model is useful for improving the HA production and narrows the number of conditions to be tested further.

Keywords: Pasteurella multocida, Escherichia coli, hyaluronic acid, genome-scale metabolic model, bioinformatics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 728
175 CFD Investigation of Turbulent Mixed Convection Heat Transfer in a Closed Lid-Driven Cavity

Authors: A. Khaleel, S. Gao

Abstract:

Both steady and unsteady turbulent mixed convection heat transfer in a 3D lid-driven enclosure, which has constant heat flux on the middle of bottom wall and with isothermal moving sidewalls, is reported in this paper for working fluid with Prandtl number Pr = 0.71. The other walls are adiabatic and stationary. The dimensionless parameters used in this research are Reynolds number, Re = 5000, 10000 and 15000, and Richardson number, Ri = 1 and 10. The simulations have been done by using different turbulent methods such as RANS, URANS, and LES. The effects of using different k-ε models such as standard, RNG and Realizable k-ε model are investigated. Interesting behaviours of the thermal and flow fields with changing the Re or Ri numbers are observed. Isotherm and turbulent kinetic energy distributions and variation of local Nusselt number at the hot bottom wall are studied as well. The local Nusselt number is found increasing with increasing either Re or Ri number. In addition, the turbulent kinetic energy is discernibly affected by increasing Re number. Moreover, the LES results have shown good ability of this method in predicting more detailed flow structures in the cavity.

Keywords: Mixed convection, Lid-driven cavity, Turbulent flow, RANS model, URANS model, Large eddy simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
174 Numerical Study of Laminar Mixed Convection Heat Transfer of a Nanofluid in a Concentric Annular Tube Using Two-Phase Mixture Model

Authors: Roghayyeh Motallebzadeh, Shahin Hajizadeh, Mohammad Reza Ghasemi

Abstract:

Laminar mixed Convection heat transfer of a nanofluid with prescribed constant heat flux on the inner wall of horizontal annular tube has been studied numerically based on two-phase mixture model in different Rayleigh Numbers and Azimuth angles. Effects of applying of different volume fractions of Al2O3 nanoparticles in water as a base fluid on hydrodynamic and thermal behaviors of the fluid flow such as axial velocity, secondary flow, temperature, heat transfer coefficient and friction coefficient at the inner and outer wall region, has been investigated. Conservation equations in elliptical form has been utilized and solved in three dimensions for a steady flow. It is observed that, there is a good agreement between results in this work and previously published experimental and numerical works on mixed convection in horizontal annulus. These particles cause to increase convection heat transfer coefficient of the fluid, meanwhile there is no considerable effect on friction coefficient.

Keywords: Buoyancy force, Laminar mixed convection, Mixture model, Nanofluid, Two-phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2775
173 Conceptual Design of an Aircraft with Maglev Landing System

Authors: Nishanth Murugan, Mohammed Niyasdeen Nejaamtheen, S. Sounder Rajan

Abstract:

The accelerated growth in aircraft industries desire effectual schemes, programs, innovative designs of advanced systems to accomplishing the augmenting need for home-free air transportation. In this paper, a contemporary conceptual design of an airplane has been proposed without landing gear systems in order to reducing accidents, time consumption, and to eliminating drawbacks by using superconducting levitation phenomenon. This invention of an airplane with superconductive material coating, on the solar plexus region assist to reduce weight by approximately 4% of the total takeoff weight, and cost effective. Moreover, we conjectured that superconductor landing system reduces ground friction, mission fuel, total drag, take-off and landing distance.

Keywords: Aircraft landing system, Magnetic levitation, Superconductors, Take-off and landing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4492
172 Sediment Patterns from Fluid-Bed Interactions: A Direct Numerical Simulations Study on Fluvial Turbulent Flows

Authors: Nadim Zgheib, Sivaramakrishnan Balachandar

Abstract:

We present results on the initial formation of ripples from an initially flattened erodible bed. We use direct numerical simulations (DNS) of turbulent open channel flow over a fixed sinusoidal bed coupled with hydrodynamic stability analysis. We use the direct forcing immersed boundary method to account for the presence of the sediment bed. The resolved flow provides the bed shear stress and consequently the sediment transport rate, which is needed in the stability analysis of the Exner equation. The approach is different from traditional linear stability analysis in the sense that the phase lag between the bed topology, and the sediment flux is obtained from the DNS. We ran 11 simulations at a fixed shear Reynolds number of 180, but for different sediment bed wavelengths. The analysis allows us to sweep a large range of physical and modelling parameters to predict their effects on linear growth. The Froude number appears to be the critical controlling parameter in the early linear development of ripples, in contrast with the dominant role of particle Reynolds number during the equilibrium stage.

Keywords: Direct numerical simulation, immersed boundary method, sediment-bed interactions, turbulent multiphase flow, linear stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 623
171 Preparation of Heterogeneous Ferrite Catalysts and Their Application for Fenton-Like Oxidation of Radioactive Organic Wastewater

Authors: Hsien T. Hsieh, Chao R. Chen, Li C. Chuang, Chin C. Shen

Abstract:

Fenton oxidation technology is the general strategy for the treatment of organic compounds-contained wastewater. However, a considerable amount of ferric sludge was produced during the Fenton process as secondary wastes, which were needed to be further removed from the effluent and treated. In this study, heterogeneous catalysts based on ferrite oxide (Cu-Fe-Ce-O) were synthesized and characterized, and their application for Fenton-like oxidation of simulated and actual radioactive organic wastewater was investigated. The results of TOC decomposition efficiency around 54% ~ 99% were obtained when the catalyst loading, H2O2 loading, pH, temperature, and reaction time were controlled. In this case, no secondary wastes formed and the given catalysts were able to be separated by magnetic devices and reused again.

Keywords: Fenton, oxidation, heterogeneous catalyst, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
170 Development of Transmission Line Sleeve Inspection Robot

Authors: Jae-Kyung Lee, Nam-Joon Jung, Byung-Hak Cho

Abstract:

The line sleeves on power transmission line connects two conductors while the transmission line is constructing. However, the line sleeves sometimes cause transmission line break down, because the line sleeves are deteriorated and decayed by acid rain. When the transmission line is broken, the economical loss is huge. Therefore the line sleeves on power transmission lines should be inspected periodically to prevent power failure. In this paper, Korea Electric Power Research Institute reviewed several robots to inspect line status and proposes a robot to inspect line sleeve by measuring magnetic field on line sleeve. The developed inspection tool can reliable to move along transmission line and overcome several obstacles on transmission line. The developed system is also applied on power transmission line and verified the efficiency of the robot.

Keywords: Transmission line inspection, line sleeve, transmission line inspection robot, line sleeve inspection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2234
169 Inhibition on Conidial Germination of Colletotrichum gloeosporiodes and Pestalotiopsis eugeniae by Bacillus subtilis LB5

Authors: Onuma Ruangwong, Wen-Jinn Liang, S.Y. Zhang, Chi-I Chang

Abstract:

The effect of antifungal compound from Bacillus subtilis strain LB5 was tested against conidial germination of Colletotrichum gloeosporioides and Pestalotiopsis eugeniae, causal agent of anthracnose and fruit rot of wax apple, respectively. Observation under scanning electron microscope and light compound microscope revealed that conidial germination was completely inhibited when treated with culture broth, culture filtrate, or crude extract from strain LB5. Identification of purified antifungal compound produced by strain LB5 in cell-free supernatant by nuclear magnetic resonance and fast atom bombardment showed that the active compound was iturin A-2.

Keywords: Iturin A-2, Bacillus subtilis LB5, Colleteotrichum gloeospporioides, Pestalotiopsis eugeniae, wax apple

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
168 Numerical Simulation of Conjugated Heat Transfer Characteristics of Laminar Air Flows in Parallel-Plate Dimpled Channels

Authors: Hossein Shokouhmand , Mohammad A. Esmaeili, Koohyar Vahidkhah

Abstract:

This paper presents a numerical study on surface heat transfer characteristics of laminar air flows in parallel-plate dimpled channels. The two-dimensional numerical model is provided by commercial code FLUENT and the results are obtained for channels with symmetrically opposing hemi-cylindrical cavities onto both walls for Reynolds number ranging from 1000 to 2500. The influence of variations in relative depth of dimples (the ratio of cavity depth to the cavity curvature diameter), the number of them and the thermophysical properties of channel walls on heat transfer enhancement is studied. The results are evident for existence of an optimum value for the relative depth of dimples in which the largest wall heat flux and average Nusselt number can be achieved. In addition, the results of conjugation simulation indicate that the overall influence of the ratio of wall thermal conductivity to the one of the fluid on heat transfer rate is not much significant and can be ignored.

Keywords: cavity, conjugation, heat transfer, laminar air flow, Numerical, parallel-plate channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1912
167 A Mesh Free Moving Node Method To Analyze Flow Through Spirals of Orbiting Scroll Pump

Authors: I.Banerjee, A.K.Mahendra, T.K.Bera, B.G.Chandresh

Abstract:

The scroll pump belongs to the category of positive displacement pump can be used for continuous pumping of gases at low pressure apart from general vacuum application. The shape of volume occupied by the gas moves and deforms continuously as the spiral orbits. To capture flow features in such domain where mesh deformation varies with time in a complicated manner, mesh less solver was found to be very useful. Least Squares Kinetic Upwind Method (LSKUM) is a kinetic theory based mesh free Euler solver working on arbitrary distribution of points. Here upwind is enforced in molecular level based on kinetic flux vector splitting scheme (KFVS). In the present study we extended the LSKUM to moving node viscous flow application. This new code LSKUM-NS-MN for moving node viscous flow is validated for standard airfoil pitching test case. Simulation performed for flow through scroll pump using LSKUM-NS-MN code agrees well with the experimental pumping speed data.

Keywords: Least Squares, Moving node, Pitching, Spirals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
166 Effect of Atmospheric Pressure on the Flow at the Outlet of a Propellant Nozzle

Authors: R. Haoui

Abstract:

The purpose of this work is to simulate the flow at the exit of Vulcan 1 engine of European launcher Ariane 5. The geometry of the propellant nozzle is already determined using the characteristics method. The pressure in the outlet section of the nozzle is less than atmospheric pressure on the ground, causing the existence of oblique and normal shock waves at the exit. During the rise of the launcher, the atmospheric pressure decreases and the shock wave disappears. The code allows the capture of shock wave at exit of nozzle. The numerical technique uses the Flux Vector Splitting method of Van Leer to ensure convergence and avoid the calculation instabilities. The Courant, Friedrichs and Lewy coefficient (CFL) and mesh size level are selected to ensure the numerical convergence. The nonlinear partial derivative equations system which governs this flow is solved by an explicit unsteady numerical scheme by the finite volume method. The accuracy of the solution depends on the size of the mesh and also the step of time used in the discretized equations. We have chosen in this study the mesh that gives us a stationary solution with good accuracy.

Keywords: Launchers, supersonic flow, finite volume, nozzles, shock wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836
165 Small Satellite Modelling and Attitude Control Using Fuzzy Logic

Authors: Amirhossein Asadabadi, Amir Anvar

Abstract:

Small satellites have become increasingly popular recently as a means of providing educational institutes with the chance to design, construct, and test their spacecraft from beginning to the possible launch due to the low launching cost. This approach is remarkably cost saving because of the weight and size reduction of such satellites. Weight reduction could be realised by utilising electromagnetic coils solely, instead of different types of actuators. This paper describes the restrictions of using only “Electromagnetic" actuation for 3D stabilisation and how to make the magnetorquer based attitude control feasible using Fuzzy Logic Control (FLC). The design is developed to stabilize the spacecraft against gravity gradient disturbances with a three-axis stabilizing capability.

Keywords: Fuzzy, Attitude Control, Small Satellite, Fuzzy Logic Control, Electromagnetic, Magnetic Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
164 Radio Technology Frequency Identification Applied in High-Voltage Power Transmission- Line for Sag Measurement

Authors: Tlotlollo Sidwell Hlalele, Shengzhi Du

Abstract:

High-voltage power transmission lines are the back bone of electrical power utilities. The stability and continuous monitoring of this critical infrastructure is pivotal. Nine-Sigma representing Eskom Holding SOC limited, South Africa has a major problem on proactive detection of fallen power lines and real time sagging measurement together with slipping of such conductors. The main objective of this research is to innovate RFID technology to solve this challenge. Various options and technologies such as GPS, PLC, image processing, MR sensors and etc., have been reviewed and draw backs were made. The potential of RFID to give precision measurement will be observed and presented. The future research will look at magnetic and electrical interference as well as corona effect on the technology.

Keywords: Precision Measurement, RFID and Sag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2384
163 Effect of Sintering Temperature Curve in Wick Manufactured for Loop Heat Pipe

Authors: Shen-Chun Wu, Chuo-Jeng Huang, Wun-Hong Yang, Jy-Cheng Chang, Chien-Chun Kung

Abstract:

This investigation examines the effect of the sintering temperature curve in manufactured nickel powder capillary structure (wick) for a loop heat pipe (LHP). The sintering temperature curve is composed of a region of increasing temperature; a region of constant temperature and a region of declining temperature. The most important region is that in which the temperature increases, as an index in the stage in which the temperature increases. The wick of nickel powder is manufactured in the stage of fixed sintering temperature and the time between the stage of constant temperature and the stage of falling temperature. When the slope of the curve in the region of increasing temperature is unity (equivalent to 10 °C/min), the structure of the wick is complete and the heat transfer performance is optimal. The result of experiment test demonstrates that the heat transfer performance is optimal at 320W; the minimal total thermal resistance is approximately 0.18°C/W, and the heat flux is 17W/cm2; the internal parameters of the wick are an effective pore radius of 3.1 μm, a permeability of 3.25×10-13m2 and a porosity of 71%.

Keywords: Loop heat pipe (LHP), capillary structure (wick), sintered temperature curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
162 A Numerical Study of Single-phase Forced Convective Heat Transfer in Tube in Tube Heat Exchangers

Authors: P. Mohajeri Khameneh, I. Mirzaie, N. Pourmahmoud, M. Rahimi, S. Majidyfar

Abstract:

Three dimensional simulations in tube in tube heat exchangers are investigated numerically in this study. In these simulations forced convective heat transfer and laminar flow of single-phase water are considered. In order to measure heat transfer parameters in these heat exchangers, FLUENT CFD Solver is used in this numerical method. For the purpose of creating geometry and exert boundary and initial conditions in the present model, finite volume method in Computational Fluid Dynamics is used in this study. In the present study, at each Z-location, variation of local temperatures, heat flux and Nusselt number at the whole tube is investigated in detail. Thereafter, averaged computational Nusselt number in this model is calculated. In addition, conceivable pressure drops have been obtained at each Z-location in this model. Then, pressure drop values in the present model are explored. Finally, all the numerical results for this kind of heat exchanger will be discussed precisely.

Keywords: Heat exchanger, Laminar flow, CFD, Nusseltnumber, Tube in tube, pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
161 Automated 3D Segmentation System for Detecting Tumor and Its Heterogeneity in Patients with High Grade Ovarian Epithelial Cancer

Authors: D. A. Binas, M. Konidari, C. Bourgioti, L. Angela Moulopoulou, T. L. Economopoulos, G. K. Matsopoulos

Abstract:

High grade ovarian epithelial cancer (OEC) is the most fatal gynecological cancer and poor prognosis of this entity is closely related to considerable intratumoral genetic heterogeneity. By examining imaging data, it is possible to assess the heterogeneity of tumorous tissue. This study presents a methodology for aligning, segmenting and finally visualizing information from various magnetic resonance imaging series, in order to construct 3D models of heterogeneity maps from the same tumor in OEC patients. The proposed system may be used as an adjunct digital tool by health professionals for personalized medicine, as it allows for an easy visual assessment of the heterogeneity of the examined tumor.

Keywords: K-means segmentation, ovarian epithelial cancer, quantitative characteristics, registration, tumor visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 621
160 MHD Unsteady Free Convection of Heat and Mass Transfer Flow through Porous Medium with Time Dependent Suction and Constant Heat Source/Sink

Authors: Praveen Saraswat, Rudraman Singh

Abstract:

In this paper, we have investigated the free convection MHD flow due to heat and mass transfer through porous medium bounded by an infinite vertical non-conducting porous plate with time dependent suction under the influence of uniform transverse magnetic field of strength H0. When Temperature (T) and Concentration (C) at the plate is oscillatory with time about a constant non-zero mean. The velocity distribution, the temperature distribution, co-efficient of skin friction and role of heat transfer is investigated. Here the partial differential equations are involved. Exact solution is not possible so approximate solution is obtained and various graphs are plotted.

Keywords: Time Dependent Suction, Convection, MHD, Porous.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861
159 Study on Position Polarity Compensation for Permanent Magnet Synchronous Motor Based on High Frequency Signal Injection

Authors: Gu Shan-Mao, He Feng-You, Ye Sheng-Wen, Ma Zhi-Xun

Abstract:

The application of a high frequency signal injection method as speed and position observer in PMSM drives has been a research focus. At present, the precision of this method is nearly good as that of ten-bit encoder. But there are some questions for estimating position polarity. Based on high frequency signal injection, this paper presents a method to compensate position polarity for permanent magnet synchronous motor (PMSM). Experiments were performed to test the effectiveness of the proposed algorithm and results present the good performance.

Keywords: permanent magnet synchronous motor, sensorless, high-frequency signal injection, magnetic pole position.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
158 Effects of Irradiation to Morphological, Physicochemical and Biocompatibility Properties of Carrageenan

Authors: Jhalique Jane R. Fojas, Rizalinda L. De Leon, Lucille V. Abad

Abstract:

The characterization of κ-carrageenan could provide a better understanding of its functions in biological, medical and industrial applications. Chemical and physical analyses of carrageenan from seaweeds, Euchema cottonii L., were done to offer information on its properties and the effects of Co-60 γ-irradiation on its thermochemical characteristics. The structural and morphological characteristics of κ-carrageenan were determined using scanning electron microscopy (SEM) while the composition, molecular weight and thermal properties were determined using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), gel permeation chromatography (GPC), thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Further chemical analysis was done using hydrogen-1 nuclear magnetic resonance (1H NMR) and functional characteristics in terms of biocompatibility were evaluated using cytotoxicity test.

Keywords: Biocompatibility, carrageenan, DSC, FTIR, GPC, irradiation, NMR, physicochemical, SEM, TGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2510