**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31106

##### Numerical Simulation of Conjugated Heat Transfer Characteristics of Laminar Air Flows in Parallel-Plate Dimpled Channels

**Authors:**
Hossein Shokouhmand ,
Mohammad A. Esmaeili,
Koohyar Vahidkhah

**Abstract:**

**Keywords:**
Heat Transfer,
Numerical,
cavity,
Conjugation,
laminar air flow,
parallel-plate channel

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1070165

**References:**

[1] Kelkar, and K. M., Patankar, S.V., 1987, "Numerical prediction of flow and heat transfer in a parallel plate channel with staggered fins", J. Heat Transfer, 109, pp. 25-30.

[2] Lazardis A., 1988, "Heat transfer correlation for flow in a parallel plate channel with staggered fins", J. Heat Transfer, 110, pp. 801-802.

[3] Cheng C.H., and Huang W.H., 1989, "Laminar forced convection flows in horizontal channels with transverse fins placed in the entrance region", Num. Heat Transfer, 16, pp. 77-100.

[4] Ghaddar, N.K., Karczak, K.Z., Mikic, B.B., and Patera, A.T., 1986, "Numerical investigation of incompressible flow in grooved channels, Part 1. Stability and self-sustained oscillations", J. Fluid Mech., 163, pp. 99-127

[5] Ghaddar, N.K., Megan, M., Mikic, B.B., and Patera, A.T., 1986, "Numerical investigation of incompressible flow in grooved channels, Part 2. Resonance and oscillatory heat-transfer enhancement", J. Fluid Mech., 168, pp. 541-567

[6] Fahanieh, B., Herman, C., and Sunden B., 1993, "Numerical and experimental analysis of laminar fluid flow and forced convection heat transfer in a grooved duct", Int. J. Heat Mass Transfer, 36, pp. 1609- 1617

[7] Moon, H. K., O -Connel, T., and Glezer, B., 2000, "Channel Height Effect on Heat Transfer and Friction in a Dimple Passage", J. Eng. Gas Turbines Power, 122, pp. 307-313.

[8] Chyu, M. K., Yu, Y., Ding, H., Downs, J. P., and Soechting, F. O., 1997, "Concavity Enhancement Heat Transfer in an Internal Cooling Passage", Proceedings IGTI, Turbo Expo, Orlando, FL, 2-5, Paper No. 97-GT-437.

[9] Ligrani, P. M., Mahmood, G. I., Harrison, J. L., Clayton, C. M., and Nelson, D. L. , 2001, "Flow Structure and Local Nusselt Number Variation in a Channel With Dimples and Protrusions on Opposite Walls", Int. J. Heat Mass Transfer, 44, pp. 4413-4425.

[10] Herman, C., and Kang, E., 2002, "Heat transfer enhancement in a grooved channel with curved vanes", Int. J. Heat Mass Transfer, 45, pp. 3741-3757

[11] Ridouane, H., and Campo, A., 2007, "Heat transfer and pressure drop characteristics of laminar air flows moving in a parallel-plate channel with transverse hemi-cylindrical cavities", Int. J. Heat Mass Transfer, 50, pp. 3913-3924

[12] Won, S.Y., and Ligrani, P.M., 2004, "Numerical predictions of flow structure and local Nusselt number ratios along and above dimpled surfaces with different dimple depths in a channel", Num. Heat Transfer, 46, pp. 549-570

[13] Park, J., Desam, P.R., and Ligrani, P.M., 2004, "Numerical predictions of flow structure above a dimpled surface in a channel", Num. Heat Transfer, 45, pp. 1-20

[14] Bilen, K., Cetin, M., Gul, H., and Balta, T., 2009, "The investigation of groove geometry effect on heat transfer for internally grooved tubes", Applied Thermal Engineering, 29, pp. 753-761

[15] Incropera, F.P., and De Witt, D.P., 1996, "Fundamentals of Heat and Mass Transfer", fourth ed., Wiley