Modified Genome-Scale Metabolic Model of Escherichia coli by Adding Hyaluronic Acid Biosynthesis-Related Enzymes (GLMU2 and HYAD) from Pasteurella multocida
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Modified Genome-Scale Metabolic Model of Escherichia coli by Adding Hyaluronic Acid Biosynthesis-Related Enzymes (GLMU2 and HYAD) from Pasteurella multocida

Authors: P. Pasomboon, P. Chumnanpuen, T. E-kobon

Abstract:

Hyaluronic acid (HA) consists of linear heteropolysaccharides repeat of D-glucuronic acid and N-acetyl-D-glucosamine. HA has various useful properties to maintain skin elasticity and moisture, reduce inflammation, and lubricate the movement of various body parts without causing immunogenic allergy. HA can be found in several animal tissues as well as in the capsule component of some bacteria including Pasteurella multocida. This study aimed to modify a genome-scale metabolic model of Escherichia coli using computational simulation and flux analysis methods to predict HA productivity under different carbon sources and nitrogen supplement by the addition of two enzymes (GLMU2 and HYAD) from P. multocida to improve the HA production under the specified amount of carbon sources and nitrogen supplements. Result revealed that threonine and aspartate supplement raised the HA production by 12.186%. Our analyses proposed the genome-scale metabolic model is useful for improving the HA production and narrows the number of conditions to be tested further.

Keywords: Pasteurella multocida, Escherichia coli, hyaluronic acid, genome-scale metabolic model, bioinformatics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815

References:


[1] Masuko, K., Murata, M., Yudoh, K., Kato, T., & Nakamura, H. (2009). Anti-inflammatory effects of hyaluronan in arthritis therapy: Not just for viscosity. Int J Gen Med, 2, 77-81. https://doi.org/10.2147/ijgm.s5495
[2] Maharjan, A. S., Pilling, D., & Gomer, R. H. (2011). High and low molecular weight hyaluronic acid differentially regulate human fibrocyte differentiation. 6(10),e26078. https://doi.org/10.1371/journal.pone.0026078
[3] Rayahin, J. E., Buhrman, J. S., Zhang, Y., Koh, T. J., & Gemeinhart, R. A. (2015). High and low molecular weight hyaluronic acid differentially influence macrophage activation. 1(7), 481-493. https://doi.org/10.1021/acsbiomaterials.5b00181
[4] de Oliveira, J. D., Carvalho, L. S., Gomes, A. M., Queiroz, L. R., Magalhaes, B. S., & Parachin, N. S. (2016). Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microb Cell Fact, 15(1), 119. https://doi.org/10.1186/s12934-016-0517-4
[5] Kogan, G., Soltes, L., Stern, R., & Gemeiner, P. (2007). Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett, 29(1), 17-25. https://doi.org/10.1007/s10529-006-9219-z
[6] Mao, Z., Shin, H. D., & Chen, R. (2009). A recombinant E. coli bioprocess for hyaluronan synthesis. Appl Microbiol Biotechnol, 84(1), 63-69. https://doi.org/10.1007/s00253-009-1963-2
[7] Jia, Y., Zhu, J., Chen, X., Tang, D., Su, D., Yao, W., & Gao, X. (2013). Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights. 132, 427-431. https://doi.org/10.1016/j.biortech.2012.12.150
[8] Chien, L. J., & Lee, C. K. (2007). Hyaluronic acid production by recombinant Lactococcus lactis. 77(2), 339-346. https://doi.org/10.1007/s00253-007-1153-z
[9] Feist, A. M., Henry, C. S., Reed, J. L., Krummenacker, M., Joyce, A. R., Karp, P. D., Broadbelt, L. J., Hatzimanikatis, V., & Palsson, B. O. (2007). A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. 3, 121. https://doi.org/10.1038/msb4100155
[10] King, Z. A., Lu, J., Drager, A., Miller, P., Federowicz, S., Lerman, J. A., Ebrahim, A., Palsson, B. O., & Lewis, N. E. (2016). BiGG Models: A platform for integrating, standardizing and sharing genome-scale models. 44(D1), D515-522. https://doi.org/10.1093/nar/gkv1049
[11] Agren, R., Liu, L., Shoaie, S., Vongsangnak, W., Nookaew, I., & Nielsen, J. (2013). The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. 9(3), e1002980. https://doi.org/10.1371/journal.pcbi.1002980
[12] Pereira, B., Miguel, J., Vilaca, P., Soares, S., Rocha, I., & Carneiro, S. (2018). Reconstruction of a genome-scale metabolic model for Actinobacillus succinogenes 130Z. 12(1), 61. https://doi.org/10.1186/s12918-018-0585-7
[13] Wang, H., Marcisauskas, S., Sanchez, B. J., Domenzain, I., Hermansson, D., Agren, R., Nielsen, J., & Kerkhoven, E. J. (2018). RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor. 14(10), e1006541. https://doi.org/10.1371/journal.pcbi.1006541
[14] Heirendt, L., Arreckx, S., Pfau, T., Mendoza, S. N., Richelle, A., Heinken, A., Haraldsdottir, H. S., Wachowiak, J., Keating, S. M., Vlasov, V., Magnusdottir, S., Ng, C. Y., Preciat, G., Zagare, A., Chan, S. H. J., Aurich, M. K., Clancy, C. M., Modamio, J., Sauls, J. T., Noronha, A., Bordbar, A., Cousins, B., El Assal, D. C., Valcarcel, L. V., Apaolaza, I., Ghaderi, S., Ahookhosh, M., Ben Guebila, M., Kostromins, A., Sompairac, N., Le, H. M., Ma, D., Sun, Y., Wang, L., Yurkovich, J. T., Oliveira, M. A. P., Vuong, P. T., El Assal, L. P., Kuperstein, I., Zinovyev, A., Hinton, H. S., Bryant, W. A., Aragon Artacho, F. J., Planes, F. J., Stalidzans, E., Maass, A., Vempala, S., Hucka, M., Saunders, M. A., Maranas, C. D., Lewis, N. E., Sauter, T., Palsson, B. O., Thiele, I., & Fleming, R. M. T. (2019). Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. 14(3), 639-702. https://doi.org/10.1038/s41596-018-0098-2
[15] Chung, J. Y., Zhang, Y., & Adler, B. (1998). The capsule biosynthetic locus of Pasteurella multocida A:1. FEMS Microbiol Lett, 166(2), 289-296. https://doi.org/10.1111/j.1574-6968.1998.tb13903.x
[16] Boyce, J. D., Chung, J. Y., & Adler, B. (2000). Pasteurella multocida capsule: composition, function and genetics. Journal of Biotechnology, 83(1-2), 153-160. https://doi.org/10.1016/s0168-1656(00)00309-6
[17] Gottesman, S., & Stout, V. (1991). Regulation of capsular polysaccharide synthesis in Escherichia coli K12. 5(7), 1599-1606. https://doi.org/10.1111/j.1365-2958.1991.tb01906.x
[18] Stevenson, G., Andrianopoulos, K., Hobbs, M., & Reeves, P. R. (1996). Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. 178(16), 4885-4893. https://doi.org/10.1128/jb.178.16.4885-4893.1996
[19] DeAngelis, P. L. (1996). Enzymological characterization of the Pasteurella multocida hyaluronic acid synthase. 35(30), 9768-9771. https://doi.org/10.1021/bi960154k
[20] Sze, J. H., Brownlie, J. C., & Love, C. A. (2016). Biotechnological production of hyaluronic acid: a mini review. 3 Biotech, 6(1), 67. https://doi.org/10.1007/s13205-016-0379-9
[21] Aroskar, V. J., Kamat, S. D., & Kamat, D. V. (2013). Effect of Various Nutritional Supplements on Hyaluronic Acid Production. 2(1). https://doi.org/10.5195/iioablett.2012.18
[22] Zou, W., Xiong, X., Zhang, J., Zhang, K., Zhao, X., & Zhao, C. (2018). Reconstruction and analysis of a genome-scale metabolic model of Methylovorus sp. MP688, a high-level pyrroloquinolone quinone producer. 172, 37-42. https://doi.org/10.1016/j.biosystems.2018.07.009