Search results for: Impact compressive property
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3023

Search results for: Impact compressive property

2933 An Investigation on Fresh and Hardened Properties of Concrete while Using Polyethylene Terephthalate (PET) as Aggregate

Authors: Md. Jahidul Islam, A. K. M. Rakinul Islam, Md. Salamah Meherier

Abstract:

This study investigates the suitability of using plastic, such as polyethylene terephthalate (PET), as a partial replacement of natural coarse and fine aggregates (for example, brick chips and natural sand) to produce lightweight concrete for load bearing structural members. The plastic coarse aggregate (PCA) and plastic fine aggregate (PFA) were produced from melted polyethylene terephthalate (PET) bottles. Tests were conducted using three different water–cement (w/c) ratios, such as 0.42, 0.48, and 0.57, where PCA and PFA were used as 50% replacement of coarse and fine aggregate respectively. Fresh and hardened properties of concrete have been compared for natural aggregate concrete (NAC), PCA concrete (PCC) and PFA concrete (PFC). The compressive strength of concrete at 28 days varied with the water–cement ratio for both the PCC and PFC. Between PCC and PFC, PFA concrete showed the highest compressive strength (23.7 MPa) at 0.42 w/c ratio and also the lowest compressive strength (13.7 MPa) at 0.57 w/c ratio. Significant reduction in concrete density was mostly observed for PCC samples, ranging between 1977–1924 kg/m³. With the increase in water–cement ratio PCC achieved higher workability compare to both NAC and PFC. It was found that both the PCA and PFA contained concrete achieved the required compressive strength to be used for structural purpose as partial replacement of the natural aggregate; but to obtain the desired lower density as lightweight concrete the PCA is most suited.

Keywords: Polyethylene terephthalate, plastic aggregate, concrete, fresh and hardened properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3227
2932 Combined Effect of Heat Stimulation and Delayed Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar

Authors: Faraidoon Rahmanzai, Mizuki Takigawa, Yu Bomura, Shigeyuki Date

Abstract:

To obtain the high quality and essential workability of mortar, different types of superplasticizers are used. The superplasticizers are the chemical admixture used in the mix to improve the fluidity of mortar. Many factors influenced the superplasticizer to disperse the cement particle in the mortar. Nature and amount of replaced cement by slag, mixing procedure, delayed addition time, and heat stimulation technique of superplasticizer cause the varied effect on the fluidity of the cementitious material. In this experiment, the superplasticizers were heated for 1 hour under 60 °C in a thermostatic chamber. Furthermore, the effect of delayed addition time of heat stimulated superplasticizers (SP) was also analyzed. This method was applied to two types of polycarboxylic acid based ether SP (precast type superplasticizer (SP2) and ready-mix type superplasticizer (SP1)) in combination with a partial replacement of normal Portland cement with blast furnace slag (BFS) with 30% w/c ratio. On the other hands, the fluidity, air content, fresh density, and compressive strength for 7 and 28 days were studied. The results indicate that the addition time and heat stimulation technique improved the flow and air content, decreased the density, and slightly decreased the compressive strength of mortar. Moreover, the slag improved the flow of mortar by increasing the amount of slag, and the effect of external temperature of SP on the flow of mortar was decreased. In comparison, the flow of mortar was improved on 5-minute delay for both kinds of SP, but SP1 has improved the flow in all conditions. Most importantly, the transition points in both types of SP appear to be the same, at about 5±1 min.  In addition, the optimum addition time of SP to mortar should be in this period.

Keywords: Combined effect, delayed addition, heat stimulation, flow of mortar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
2931 Mechanical Characterization of Extrudable Foamed Concrete: An Experimental Study

Authors: D. Falliano, D. De Domenico, G. Ricciardi, E. Gugliandolo

Abstract:

This paper is focused on the mechanical characterization of foamed concrete specimens with protein-based foaming agent. Unlike classic foamed concrete, a peculiar property of the analyzed foamed concrete is the extrudability, which is achieved via a specific additive in the concrete mix that significantly improves the cohesion and viscosity of the fresh cementitious paste. A broad experimental campaign was conducted to evaluate the compressive strength and the indirect tensile strength of the specimens. The study has comprised three different cement types, two water/cement ratios, three curing conditions and three target dry densities. The variability of the strength values upon the above mentioned factors is discussed.

Keywords: Cement type, curing conditions, density, extrudable concrete, foamed concrete, mechanical characterization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217
2930 Effect of Concrete Strength and Aspect Ratio on Strength and Ductility of Concrete Columns

Authors: Mohamed A. Shanan, Ashraf H. El-Zanaty, Kamal G. Metwally

Abstract:

This paper presents the effect of concrete compressive strength and rectangularity ratio on strength and ductility of normal and high strength reinforced concrete columns confined with transverse steel under axial compressive loading. Nineteen normal strength concrete rectangular columns with different variables tested in this research were used to study the effect of concrete compressive strength and rectangularity ratio on strength and ductility of columns. The paper also presents a nonlinear finite element analysis for these specimens and another twenty high strength concrete square columns tested by other researchers using ANSYS 15 finite element software. The results indicate that the axial force – axial strain relationship obtained from the analytical model using ANSYS are in good agreement with the experimental data. The comparison shows that the ANSYS is capable of modeling and predicting the actual nonlinear behavior of confined normal and high-strength concrete columns under concentric loading. The maximum applied load and the maximum strain have also been confirmed to be satisfactory. Depending on this agreement between the experimental and analytical results, a parametric numerical study was conducted by ANSYS 15 to clarify and evaluate the effect of each variable on strength and ductility of the columns.

Keywords: ANSYS, concrete compressive strength effect, ductility, rectangularity ratio, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
2929 Effect of the Portland-Limestone Cement Grades on the Compressive Strength of Hollow Sandcrete Blocks

Authors: Kazeem K. Adewole, Gbenga. M. Ayininula, Wasiu O. Ajagbe, Olabisi Akinade

Abstract:

The commercial sandcrete block makers in Nigeria use the same cement-sand mix ratio for sandcrete blocks production irrespective of the cement grade. Investigation revealed that the compressive strengths of hollow sandcrete blocks produced with Portland-limestone cement grade 42.5 are higher than the sandcrete blocks produced with cement grade 32.5. The use of stronger sandcrete blocks produced with cement grade 42.5 will ensure the construction of stronger buildings and other sandcrete blocks-based infrastructures and reduce the incessant failure of building and other sandcrete blocks-based infrastructures in Nigeria at no additional cost as both cement grades cost the same amount in Nigeria. It is recommended that the Standards Organisation of Nigeria should create grassroots awareness on the different cement grades in Nigeria and specify that Portland-limestone cement grade 42.5 be used for sandcrete blocks production.

 

Keywords: Cement grades, Compressive strength, Sandcrete blocks, Portland-limestone cement, Nigerian cement market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3744
2928 A Study of the Replacement of Natural Coarse Aggregate by Spherically-Shaped and Crushed Waste Cathode Ray Tube Glass in Concrete

Authors: N. N. M. Pauzi, M. R. Karim, M. Jamil, R. Hamid, M. F. M. Zain

Abstract:

The aim of this study is to conduct an experimental investigation on the influence of complete replacement of natural coarse aggregate with spherically-shape and crushed waste cathode ray tube (CRT) glass to the aspect of workability, density, and compressive strength of the concrete. After characterizing the glass, a group of concrete mixes was prepared to contain a 40% spherical CRT glass and 60% crushed CRT glass as a complete (100%) replacement of natural coarse aggregates. From a total of 16 types of concrete mixes, the optimum proportion was selected based on its best performance. The test results showed that the use of spherical and crushed glass that possesses a smooth surface, rounded, irregular and elongated shape, and low water absorption affects the workability of concrete. Due to a higher specific gravity of crushed glass, concrete mixes containing CRT glass had a higher density compared to ordinary concrete. Despite the spherical and crushed CRT glass being stronger than gravel, the results revealed a reduction in compressive strength of the concrete. However, using a lower water to binder (w/b) ratio and a higher superplasticizer (SP) dosage, it is found to enhance the compressive strength of 60.97 MPa at 28 days that is lower by 13% than the control specimen. These findings indicate that waste CRT glass in the form of spherical and crushed could be used as an alternative of coarse aggregate that may pave the way for the disposal of hazardous e-waste.

Keywords: Cathode ray tube, glass, coarse aggregate, compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1324
2927 Investigation of Compressive Strength of Slag-Based Geopolymer Concrete Incorporated with Rice Husk Ash Using 12M Alkaline Activator

Authors: Festus A. Olutoge, Ahmed A. Akintunde, Anuoluwapo S. Kolade, Aaron A. Chadee, Jovanca Smith

Abstract:

Geopolymer concrete's (GPC) compressive strength was investigated. The GPC was incorporated with rice husk ash (RHA) and ground granulated blast furnace slag (GGBFS), which may have potential in the construction industry to replace Portland limestone cement (PLC) concrete. The sustainable construction binders used were GGBFS and RHA, and a solution of sodium hydroxide (NaOH) and sodium silicate gel (Na2SiO3) was used as the 12-molar alkaline activator. Five GPC mixes comprising fine aggregates, coarse aggregates, GGBS, and RHA, and the alkaline solution in the ratio 2: 2.5: 1: 0.5, respectively, were prepared to achieve grade 40 concrete, and PLC was substituted with GGBFS and RHA in the ratios of 0:100, 25:75, 50:50, 75:25, and 100:0. A control mix was also prepared which comprised of 100% water and 100% PLC as the cementitious material. The GPC mixes were thermally cured at 60-80 ºC in an oven for approximately 24 h. After curing for 7 and 28 days, the compressive strength test results of the hardened GPC samples showed that GPC-Mix #3, comprising 50% GGBFS and 50% RHA, was the most efficient geopolymer mix. The mix had compressive strengths of 35.71 MPa and 47.26 MPa, 19.87% and 8.69% higher than the PLC concrete samples, which had 29.79 MPa and 43.48 MPa after 7 and 28 days, respectively. Therefore, GPC containing GGBFS incorporated with RHA is an efficient method of decreasing the use of PLC in conventional concrete production and reducing the high amounts of CO2 emitted into the atmosphere in the construction industry.

Keywords: Alkaline solution, cementitious material, geopolymer concrete, ground granulated blast furnace slag, rice husk ash.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 121
2926 On Convergence Property of MINRES Method for Solving a Complex Shifted Hermitian Linear System

Authors: Guiding Gu, Guo Liu

Abstract:

We discuss the convergence property of the minimum residual (MINRES) method for the solution of complex shifted Hermitian system (αI + H)x = f. Our convergence analysis shows that the method has a faster convergence than that for real shifted Hermitian system (Re(α)I + H)x = f under the condition Re(α) + λmin(H) > 0, and a larger imaginary part of the shift α has a better convergence property. Numerical experiments show such convergence properties.

Keywords: complex shifted linear system, Hermitian matrix, MINRES method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
2925 Multidimensional and Data Mining Analysis for Property Investment Risk Analysis

Authors: Nur Atiqah Rochin Demong, Jie Lu, Farookh Khadeer Hussain

Abstract:

Property investment in the real estate industry has a high risk due to the uncertainty factors that will affect the decisions made and high cost. Analytic hierarchy process has existed for some time in which referred to an expert-s opinion to measure the uncertainty of the risk factors for the risk analysis. Therefore, different level of experts- experiences will create different opinion and lead to the conflict among the experts in the field. The objective of this paper is to propose a new technique to measure the uncertainty of the risk factors based on multidimensional data model and data mining techniques as deterministic approach. The propose technique consist of a basic framework which includes four modules: user, technology, end-user access tools and applications. The property investment risk analysis defines as a micro level analysis as the features of the property will be considered in the analysis in this paper.

Keywords: Uncertainty factors, data mining, multidimensional data model, risk analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2871
2924 Evaluating Residual Mechanical and Physical Properties of Concrete at Elevated Temperatures

Authors: S. Hachemi, A. Ounis, S. Chabi

Abstract:

This paper presents the results of an experimental  study on the effects of elevated temperature on compressive and  flexural strength of Normal Strength Concrete (NSC), High Strength  Concrete (HSC) and High Performance Concrete (HPC). In addition,  the specimen mass and volume were measured before and after  heating in order to determine the loss of mass and volume during the  test. In terms of non-destructive measurement, ultrasonic pulse  velocity test was proposed as a promising initial inspection method  for fire damaged concrete structure. 100 Cube specimens for three  grades of concrete were prepared and heated at a rate of 3°C/min up  to different temperatures (150, 250, 400, 600, and 900°C). The results  show a loss of compressive and flexural strength for all the concretes  heated to temperature exceeding 400°C. The results also revealed that  mass and density of the specimen significantly reduced with an  increase in temperature.

 

Keywords: High temperature, Compressive strength, Mass loss, Ultrasonic pulse velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179
2923 Effect of Polymer Molecular Structures on Properties of Dental Cement Restoratives

Authors: Dong Xie, Jun Zhao, Yiming Weng

Abstract:

The objective of this study was to synthesize and characterize the poly(alkenoic acid)s with different molecular structures, use these polymers to formulate a dental cement restorative, and study the effect of molecular structures on reaction kinetics, viscosity, and mechanical strengths of the formed polymers and cement restoratives. In this study, poly(alkenoic acid)s with different molecular structures were synthesized. The purified polymers were formulated with commercial Fuji II LC glass fillers to form the experimental cement restoratives. The reaction kinetics was studied via 1HNMR spectroscopy. The formed restoratives were evaluated using compressive strength, diametral tensile strength, flexural strength, hardness and wear-resistance tests. Specimens were conditioned in distilled water at 37oC for 24 h prior to testing. Fuji II LC restorative was used as control. The results show that the higher the arm number and initiator concentration, the faster the reaction was. It was also found that the higher the arm number and branching that the polymer had, the lower the viscosity of the polymer in water and the lower the mechanical strengths of the formed restorative. The experimental restoratives were 31-53% in compressive strength, 37- 55% in compressive modulus, 80-126% in diametral tensile strength, 76-94% in flexural strength, 4-21% in fracture toughness and 53-96% in hardness higher than Fuji II LC. For wear test, the experimental restoratives were only 5.4-13% of abrasive and 6.4-12% of attritional wear depths of Fuji II LC in each wear cycle. The aging study also showed that all the experimental restoratives increased their strength continuously during 30 days, unlike Fuji II LC. It is concluded that polymer molecular structures have significant and positive impact on mechanical properties of dental cement restoratives.

Keywords: Poly(alkenoic acid)s, molecular structures, dental cement, mechanical strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
2922 Prediction of Compressive Strength Using Artificial Neural Network

Authors: Vijay Pal Singh, Yogesh Chandra Kotiyal

Abstract:

Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-destructive techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques.

Keywords: Rebound, ultra-sonic pulse, penetration, ANN, NDT, regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4324
2921 The Effect of Fine Aggregate Properties on the Fatigue Behavior of the Conventional and Polymer Modified Bituminous Mixtures Using Two Types of Sand as Fine Aggregate

Authors: S. G. Yasreen, N. B. Madzlan, K. Ibrahim

Abstract:

Fatigue cracking continues to be the main challenges in improving the performance of bituminous mixture pavements. The purpose of this paper is to look at some aspects of the effects of fine aggregate properties on the fatigue behaviour of hot mixture asphalt. Two types of sand (quarry and mining sand) with two conventional bitumen (PEN 50/60 & PEN 80/100) and four polymers modified bitumen PMB (PM1_82, PM1_76, PM2_82 and PM2_76) were used. Physical, chemical and mechanical tests were performed on the sands to determine their effect when incorporated with a bituminous mixture. According to the beam fatigue results, quarry sand that has more angularity, rougher, higher shear strength and a higher percentage of Aluminium oxide presented higher resistance to fatigue. Also a PMB mixture gives better fatigue results than conventional mixtures, this is due to the PMB having better viscosity property than that of the conventional bitumen.

Keywords: Beam fatigue test, chemical property, mechanical property, physical property

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761
2920 Durability Study Partially Saturated Fly Ash Blended Cement Concrete

Authors: N. Shafiq, M. F. Nuruddin, S. C. Chin

Abstract:

This paper presents the experimental results of the investigation of various properties related to the durability and longterm performance of mortars made of Fly Ash blended cement, FA and Ordinary Portland cement, OPC. The properties that were investigated in an experimental program include; equilibration of specimen in different relative humidity, determination of total porosity, compressive strength, chloride permeability index, and electrical resistivity. Fly Ash blended cement mortar specimens exhibited 10% to 15% lower porosity when measured at equilibrium conditions in different relative humidities as compared to the specimens made of OPC mortar, which resulted in 6% to 8% higher compressive strength of FA blended cement mortar specimens. The effects of ambient relative humidity during sample equilibration on porosity and strength development were also studied. For specimens equilibrated in higher relative humidity conditions, such as 75%, the total porosity of different mortar specimens was between 35% to 50% less than the porosity of samples equilibrated in 12% relative humidity, consequently leading to higher compressive strengths of these specimens.A valid statistical correlation between values of compressive strength, porosity and the degree of saturation was obtained. Measured values of chloride permeability index of fly ash blended cement mortar were obtained as one fourth to one sixth of those measured for OPC mortar specimens, which indicates high resistance against chloride ion penetration in FA blended cement specimens, hence resulting in a highly durable mortar.

Keywords: chloride permeability index, equilibrium condition, electrical resistivity, fly ash

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
2919 Weyl Type Theorem and the Fuglede Property

Authors: M. H. M. Rashid

Abstract:

Given H a Hilbert space and B(H) the algebra of bounded linear operator in H, let δAB denote the generalized derivation defined by A and B. The main objective of this article is to study Weyl type theorems for generalized derivation for (A,B) satisfying a couple of Fuglede.

Keywords: Fuglede Property, Weyl’s theorem, generalized derivation, Aluthge Transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 488
2918 Producing New Composite Materials by Using Tragacanth and Waste Ash

Authors: Yasar Bicer, Serif Yilmaz

Abstract:

In present study, two kinds of thermal power plant ashes; one the fly ash and the other waste ash are mixed with adhesive tragacanth and cement to produce new composite materials. 48 new samples are produced by varying the percentages of the fly ash, waste ash, cement and tragacanth. The new samples are subjected to some tests to find out their properties such as thermal conductivity, compressive strength, tensile strength and sucking capability of water. It is found that; the thermal conductivity decreases with increasing amount of tragacanth in the mixture. The compressive, tensile strength increases when the rate of tragacanth is up to 1%, whilst as the amount of tragacanth increases up to 1.5%, the compressive, tensile strength decreases slightly. The rate of water absorption of samples was more than 30%. From this result, it is concluded that these materials can not be used as external plaster or internal plaster material that faces to water. They can be used in internal plaster unless touching water and they can be used as cover plaster under roof and riprap material in sandwich panels. It is also found that, these materials can be cut with saw, drilled with screw and painted with any kind of paint.

Keywords: Fly ash, tragacanth, cement, composite material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
2917 The Behavior of Self-Compacting Light Weight Concrete Produced by Magnetic Water

Authors: Moosa Mazloom, Hojjat Hatami

Abstract:

The aim of this article is to access the optimal mix design of self-compacting light weight concrete. The effects of magnetic water, superplasticizer based on polycarboxylic-ether, and silica fume on characteristics of this type of concrete are studied. The workability of fresh concrete and the compressive strength of hardened concrete are considered here. For this purpose, nine mix designs were studied. The percentages of superplasticizer were 0.5, 1, and 2% of the weight of cement, and the percentages of silica fume were 0, 6, and 10% of the weight of cement. The water to cementitious ratios were 0.28, 0.32, and 0.36. The workability of concrete samples was analyzed by the devices such as slump flow, V-funnel, L box, U box, and Urimet with J ring. Then, the compressive strengths of the mixes at the ages of 3, 7, 28, and 90 days were obtained. The results show that by using magnetic water, the compressive strengths are improved at all the ages. In the concrete samples with ordinary water, more superplasticizer dosages were needed. Moreover, the combination of superplasticizer and magnetic water had positive effects on the mixes containing silica fume and they could flow easily.

Keywords: Magnetic water, self-compacting light weight concrete, silica fume, superplasticizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251
2916 Mechanical Properties of Ultra High Performance Concrete

Authors: Prabhat Ranjan Prem, B.H.Bharatkumar, Nagesh R Iyer

Abstract:

A research program is conducted to evaluate the mechanical properties of Ultra High Performance Concrete, target compressive strength at the age of 28 days being more than 150 MPa. The methodology to develop such mix has been explained. The material properties, mix design and curing regime are determined. The material attributes are understood by studying the stress strain behaviour of UHPC cylinders under uniaxial compressive loading. The load –crack mouth opening displacement (cmod) of UHPC beams, flexural strength and fracture energy was evaluated using third point loading test. Compressive strength and Split tensile strength results are determined to find out the compressive and tensile behaviour. Residual strength parameters are presented vividly explaining the flexural performance, toughness of concrete.Durability studies were also done to compare the effect of fibre to that of a control mix For all the studies the Mechanical properties were evaluated by varying the percentage and aspect ratio of steel fibres The results reflected that higher aspect ratio and fibre volume produced drastic changes in the cube strength, cylinder strength, post peak response, load-cmod, fracture energy flexural strength, split tensile strength, residual strength and durability. In regards to null application of UHPC in India, an initiative is undertaken to comprehend the mechanical behaviour of UHPC, which will be vital for longer run in commercialization for structural applications.

Keywords: Ultra High Performance Concrete, Reinforcement Index, Compressive Strength, Tensile Strength, Flexural Strength, Residual Strength, Fracture Energy, Stress-Strain Relationships, Load-Crack Mouth Opening Displacement and Durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10532
2915 Influence of Gum Acacia Karroo on Some Mechanical Properties of Cement Mortars and Concrete

Authors: Rose Mbugua, Ramadhan Wanjala, Julius Ndambuki

Abstract:

Natural admixtures provide concrete with enhanced properties but their processing end up making them very expensive resulting in increase to cost of concrete. In this study the effect of Gum from Acacia Karroo (GAK) as set-retarding admixture in cement pastes was studied. The possibility of using GAK as water reducing admixture both in cement mortar concrete was also investigated. Cement pastes with different dosages of GAK were prepared to measure the setting time using different dosages. Compressive strength of cement mortars with 0.7, 0.8 and 0.9% weight of cement and w/c ratio of 0.5 were compared to those with water cement (w/c) ratio of 0.44 but same dosage of GAK. Concrete samples were prepared using higher dosages of GAK (1, 2 and 3% wt of cement) and a water bidder (w/b) of 0.61 were compared to those with the same GAK dosage but with reduced w/b ratio. There was increase in compressive strength of 9.3% at 28 days for cement mortar samples with 0.9% dosage of GAK and reduced w/c ratio.

Keywords: Compressive strength, Gum Acacia Karroo, retarding admixture, setting time, water-reducing admixture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
2914 Hydraulic Conductivity Prediction of Cement Stabilized Pavement Base Incorporating Recycled Plastics and Recycled Aggregates

Authors: Md. Shams Razi Shopnil, Tanvir Imtiaz, Sabrina Mahjabin, Md. Sahadat Hossain

Abstract:

Saturated hydraulic conductivity is one of the most significant attributes of pavement base course. Determination of hydraulic conductivity is a routine procedure for regular aggregate base courses. However, in many cases, a cement-stabilized base course is used with compromised drainage ability. Traditional hydraulic conductivity testing procedure is a readily available option which leads to two consequential drawbacks, i.e., the time required for the specimen to be saturated and extruding the sample after completion of the laboratory test. To overcome these complications, this study aims at formulating an empirical approach to predicting hydraulic conductivity based on Unconfined Compressive Strength test results. To do so, this study comprises two separate experiments (Constant Head Permeability test and Unconfined Compressive Strength test) conducted concurrently on a specimen having the same physical credentials. Data obtained from the two experiments were then used to devise a correlation between hydraulic conductivity and unconfined compressive strength. This correlation in the form of a polynomial equation helps to predict the hydraulic conductivity of cement-treated pavement base course, bypassing the cumbrous process of traditional permeability and less commonly used horizontal permeability tests. The correlation was further corroborated by a different set of data, and it has been found that the derived polynomial equation is deemed to be a viable tool to predict hydraulic conductivity.

Keywords: Hydraulic conductivity, unconfined compressive strength, recycled plastics, recycled concrete aggregates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 253
2913 Mix Design Curves for High Volume Fly Ash Concrete

Authors: S. S. Awanti, Aravindakumar B. Harwalkar

Abstract:

Concrete construction in future has to be environmental friendly apart from being safe so that society at large is benefited by the huge investments made in the infrastructure projects. To achieve this, component materials of the concrete system have to be optimized with reference to sustainability. This paper presents a study on development of mix proportions of high volume fly ash concrete (HFC). A series of HFC mixtures with cement replacement levels varying between 50% and 65% were prepared with water/binder ratios of 0.3 and 0.35. Compressive strength values were obtained at different ages. From the experimental results, pozzolanic efficiency ratios and mix design curves for HFC were established.

Keywords: Age factor, compressive strength, high volume fly ash concrete, pozzolanic efficiency ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
2912 Study on Compressive Strength and Setting Times of Fly Ash Concrete after Slump Recovery Using Superplasticizer

Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert

Abstract:

Fresh concrete has one of dynamic properties known as slump. Slump of concrete is design to compatible with placing method. Due to hydration reaction of cement, the slump of concrete is loss through time. Therefore, delayed concrete probably get reject because slump is unacceptable. In order to recover the slump of delayed concrete the second dose of superplasticizer (naphthalene based type F) is added into the system, the slump recovery can be done as long as the concrete is not setting. By adding superplasticizer as solution for recover unusable slump loss concrete may affects other concrete properties. Therefore, this paper was observed setting times and compressive strength of concrete after being re-dose with chemical admixture type F (superplasticizer, naphthalene based) for slump recovery. The concrete used in this study was fly ash concrete with fly ash replacement of 0%, 30% and 50% respectively. Concrete mix designed for test specimen was prepared with paste content (ratio of volume of cement to volume of void in the aggregate) of 1.2 and 1.3, water-to-binder ratio (w/b) range of 0.3 to 0.58, initial dose of superplasticizer (SP) range from 0.5 to 1.6%. The setting times of concrete were tested both before and after re-dosed with different amount of second dose and time of dosing. The research was concluded that addition of second dose of superplasticizer would increase both initial and final setting times accordingly to dosage of addition. As for fly ash concrete, the prolongation effect was higher as the replacement of fly ash increase. The prolongation effect can reach up to maximum about 4 hours. In case of compressive strength, the re-dosed concrete has strength fluctuation within acceptable range of ±10%.

Keywords: Compressive strength, Fly ash concrete, Second dose of superplasticizer, Slump recovery, Setting times.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
2911 Persistence of Termination for Term Rewriting Systems with Ordered Sorts

Authors: Munehiro Iwami

Abstract:

A property is persistent if for any many-sorted term rewriting system , has the property if and only if term rewriting system , which results from by omitting its sort information, has the property. Zantema showed that termination is persistent for term rewriting systems without collapsing or duplicating rules. In this paper, we show that the Zantema's result can be extended to term rewriting systems on ordered sorts, i.e., termination is persistent for term rewriting systems on ordered sorts without collapsing, decreasing or duplicating rules. Furthermore we give the example as application of this result. Also we obtain that completeness is persistent for this class of term rewriting systems.

Keywords: Theory of computing, Model-based reasoning, term rewriting system, termination

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
2910 Online Monitoring Rheological Property of Polymer Melt during Injection Molding

Authors: Chung-Chih Lin, Chien-Liang Wu

Abstract:

The detection of the polymer melt state during manufacture process is regarded as an efficient way to control the molded part quality in advance. Online monitoring rheological property of polymer melt during processing procedure provides an approach to understand the melt state immediately. Rheological property reflects the polymer melt state at different processing parameters and is very important in injection molding process especially. An approach that demonstrates how to calculate rheological property of polymer melt through in-process measurement, using injection molding as an example, is proposed in this study. The system consists of two sensors and a data acquisition module can process the measured data, which are used for the calculation of rheological properties of polymer melt. The rheological properties of polymer melt discussed in this study include shear rate and viscosity which are investigated with respect to injection speed and melt temperature. The results show that the effect of injection speed on the rheological properties is apparent, especially for high melt temperature and should be considered for precision molding process.

Keywords: Injection molding, melt viscosity, shear rate, monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2755
2909 Feasibility of a Biopolymer as Lightweight Aggregate in Perlite Concrete

Authors: Ali A. Sayadi, Thomas R. Neitzert, G. Charles Clifton

Abstract:

Lightweight concrete is being used in the construction industry as a building material in its own right. Ultra-lightweight concrete can be applied as a filler and support material for the manufacturing of composite building materials. This paper is about the development of a stable and reproducible ultra-lightweight concrete with the inclusion of poly-lactic acid (PLA) beads and assessing the feasibility of PLA as a lightweight aggregate that will deliver advantages such as a more eco-friendly concrete and a non-petroleum polymer aggregate. In total, sixty-three samples were prepared and the effectiveness of mineral admixture, curing conditions, water-cement ratio, PLA ratio, EPS ratio and perlite ratio on compressive strength of perlite concrete are studied. The results show that PLA particles are sensitive to alkali environment of cement paste and considerably shrank and lost their strength. A higher compressive strength and a lower density was observed when expanded polystyrene (EPS) particles replaced PLA beads. In addition, a set of equations is proposed to estimate the water-cement ratio, cement content and compressive strength of perlite concrete.

Keywords: Perlite concrete, poly-lactic acid, expanded polystyrene, concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
2908 Optimum Design of Alkali Activated Slag Concretes for Low Chloride Ion Permeability and Water Absorption Capacity

Authors: Müzeyyen Balçikanli, Erdoğan Özbay, Hakan Tacettin Türker, Okan Karahan, Cengiz Duran Atiş

Abstract:

In this research, effect of curing time (TC), curing temperature (CT), sodium concentration (SC) and silicate modules (SM) on the compressive strength, chloride ion permeability, and water absorption capacity of alkali activated slag (AAS) concretes were investigated. For maximization of compressive strength while for minimization of chloride ion permeability and water absorption capacity of AAS concretes, best possible combination of CT, CTime, SC and SM were determined. An experimental program was conducted by using the central composite design method. Alkali solution-slag ratio was kept constant at 0.53 in all mixture. The effects of the independent parameters were characterized and analyzed by using statistically significant quadratic regression models on the measured properties (dependent parameters). The proposed regression models are valid for AAS concretes with the SC from 0.1% to 7.5%, SM from 0.4 to 3.2, CT from 20 °C to 94 °C and TC from 1.2 hours to 25 hours. The results of test and analysis indicate that the most effective parameter for the compressive strength, chloride ion permeability and water absorption capacity is the sodium concentration.

Keywords: Alkali activation, slag, rapid chloride permeability, water absorption capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1096
2907 Wavelet and K-L Seperability Based Feature Extraction Method for Functional Data Classification

Authors: Jun Wan, Zehua Chen, Yingwu Chen, Zhidong Bai

Abstract:

This paper proposes a novel feature extraction method, based on Discrete Wavelet Transform (DWT) and K-L Seperability (KLS), for the classification of Functional Data (FD). This method combines the decorrelation and reduction property of DWT and the additive independence property of KLS, which is helpful to extraction classification features of FD. It is an advanced approach of the popular wavelet based shrinkage method for functional data reduction and classification. A theory analysis is given in the paper to prove the consistent convergence property, and a simulation study is also done to compare the proposed method with the former shrinkage ones. The experiment results show that this method has advantages in improving classification efficiency, precision and robustness.

Keywords: classification, functional data, feature extraction, K-Lseperability, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
2906 Economic Evaluations Using Genetic Algorithms to Determine the Territorial Impact Caused by High Speed Railways

Authors: Gianluigi De Mare, Tony Leopoldo Luigi Lenza, Rino Conte

Abstract:

The evolution of technology and construction techniques has enabled the upgrading of transport networks. In particular, the high-speed rail networks allow convoys to peak at above 300 km/h. These structures, however, often significantly impact the surrounding environment. Among the effects of greater importance are the ones provoked by the soundwave connected to train transit. The wave propagation affects the quality of life in areas surrounding the tracks, often for several hundred metres. There are substantial damages to properties (buildings and land), in terms of market depreciation. The present study, integrating expertise in acoustics, computering and evaluation fields, outlines a useful model to select project paths so as to minimize the noise impact and reduce the causes of possible litigation. It also facilitates the rational selection of initiatives to contain the environmental damage to the already existing railway tracks. The research is developed with reference to the Italian regulatory framework (usually more stringent than European and international standards) and refers to a case study concerning the high speed network in Italy.

Keywords: Impact, compensation for financial loss, depreciation of property, railway network design, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
2905 A Kernel Classifier using Linearised Bregman Iteration

Authors: K. A. D. N. K Wimalawarne

Abstract:

In this paper we introduce a novel kernel classifier based on a iterative shrinkage algorithm developed for compressive sensing. We have adopted Bregman iteration with soft and hard shrinkage functions and generalized hinge loss for solving l1 norm minimization problem for classification. Our experimental results with face recognition and digit classification using SVM as the benchmark have shown that our method has a close error rate compared to SVM but do not perform better than SVM. We have found that the soft shrinkage method give more accuracy and in some situations more sparseness than hard shrinkage methods.

Keywords: Compressive sensing, Bregman iteration, Generalisedhinge loss, sparse, kernels, shrinkage functions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1335
2904 Quality Assessment of Hollow Sandcrete Blocks in Minna, Nigeria

Authors: M. Abdullahi, S. Sadiku, Bashar S. Mohammed, J. I. Aguwa

Abstract:

The properties of hollow sandcrete blocks produced in Minna, Nigeria are presented. Sandcrete block is made of cement, water and sand binded together in certain mix proportions. For the purpose of this work, fifty (50) commercial sandcrete block industries were visited in Minna, Nigeria to obtain block samples and aggregates used for the manufacture, and to take inventory of the mix composition and the production process. Sieve analysis tests were conduction on the soil sample from various block industries to ascertain their quality to be used for block making. The mix ratios were also investigated. Five (5) nine inches (9’’ or 225mm) blocks were obtained from each block industry and tested for dimensional compliance and compressive strength. The results of the soil test shows that the grading fall within the limit for natural aggregate and can easily are used to obtain workable mix. Physical examinations of the block sizes show slight deviation from the standard requirement in NIS 87:2000. Compressive strength of hollow sandcrete blocks in range of 0.12 N/mm2 to 0.54 N/mm2 was obtained which is below the recommendable value of 3.45 N/mm2 for load bearing hollow sandcrete blocks. This indicates that these blocks are below the standard for load-bearing sandcrete blocks and cannot be used as load bearing walling units. The mix composition also indicated low cement content resulting in low compressive strength. Most of the commercial block industries visited does not take curing very serious. Water were only sprinkled ones or twice before the blocks were stacked and made readily available for sale. It is recommended that a mix ratio of 1:4 to 1:6 should be used for the production of sandcrete blocks and proper curing practice should be adhered. Blocks should also be cured for 14 days before making them available for consumers.

Keywords: Compressive strength, dimensions, mix proportions, sandcrete blocks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936