On Convergence Property of MINRES Method for Solving a Complex Shifted Hermitian Linear System
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
On Convergence Property of MINRES Method for Solving a Complex Shifted Hermitian Linear System

Authors: Guiding Gu, Guo Liu

Abstract:

We discuss the convergence property of the minimum residual (MINRES) method for the solution of complex shifted Hermitian system (αI + H)x = f. Our convergence analysis shows that the method has a faster convergence than that for real shifted Hermitian system (Re(α)I + H)x = f under the condition Re(α) + λmin(H) > 0, and a larger imaginary part of the shift α has a better convergence property. Numerical experiments show such convergence properties.

Keywords: complex shifted linear system, Hermitian matrix, MINRES method.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087888

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631

References:


[1] O. Axelsson and A. Kucherov, ”Real valued iterative methods for solving complex symmetric linear systems,” Numer. Linear Algebra Appl., 7(2000), 197-218.
[2] Z.-Z. Bai, M. Benzi and F. Chen, ”Modified HSS iteration methods for a class of complex symmetric linear systems,” Computing, 87(2010), 93- 111.
[3] Z.-Z. Bai, G.H. Golub and M.K. Ng, ”Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems,” SIAM J. Matrix Anal. Appl., 24(2003), 603-626.
[4] A. Bayliss, C.I. Goldstein and E. Turkel, ”The numerical solution of the Helmholtz equation for wave propagation problems in underwater acoustics,” Comp. Maths. Appl., 11(1985), 655-665.
[5] V. Faber and T. Manteuffel, ”Necessary and sufficient conditions for the existence of a conjugate gradient method,” SIAM J. Numer. Anal., 21(1984), 352-362.
[6] A.Feriani, F.Perotti and V. Simoncini, ”Iterative system solvers for the frequency analysis of linear mechanical systems,” Comput. Methods Appl. Mech. Engrg., 190(2000), 1719-1739.
[7] R. Freund, ”On polynomial approximations to fa(z) = (z − a)−1 with complex a and some applications to certain non-Hermitian matrices,” Approx. Theory and Appl., 5(1989), 15-31.
[8] R. Freund, ”On conjugate gradient type methods and polynomial preconditioners for a class of complex non-Hermitian matrices,” Numer. Math., 57(1990), 285-312.
[9] A. Frommer and U. Glassner, ”Restarted GMRES for shifted linear systems,” SIAM J. Sci. Comput., 19(1998), 15-26.
[10] Guiding Gu, ”HSS method with a complex parameter for the solution of complex linear system,” J. Comp. Math., 29(2011), 441-457.
[11] Guiding Gu, ”On convergence property of the Lanczos method for solving a complex shifted Hermitian linear system,” appear to J. Comp. Math..
[12] Guiding Gu and V. Simoncini, ”Numerical solution of parameterdependent linear systems,” Numer. Linear Algebra Appl., 12(2005), 923- 940.
[13] C. Lanczos, ”An iteration method for the solution of the eigenvalue problem of linear differential and integral equations,” J. Res. Nat. Bur. Standards, 45(1950), 255-282.
[14] J. Liesen and P. Saylor, ”Orthogonal Hessenberg reduction and orthogonal Krylov subspace basis,” SIAM J. Numer. Anal., 42(2005), 2148-2158.
[15] L. Lopez and V. Simoncini, ”Analysis of projection methods for rational function approximation to the matrix exponential,” SIAM J. Numer. Anal., 44(2006), 613-635.
[16] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Co.: Boston, 1996, ch. 6.