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Abstract—In this paper we introduce a novel kernel classifier
based on a iterative shrinkage algorithm developed for compressive
sensing. We have adopted Bregman iteration with soft and hard
shrinkage functions and generalized hinge loss for solving l1 norm
minimization problem for classification. Our experimental results
with face recognition and digit classification using SVM as the
benchmark have shown that our method has a close error rate
compared to SVM but do not perform better than SVM. We have
found that the soft shrinkage method give more accuracy and in some
situations more sparseness than hard shrinkage methods.
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I. INTRODUCTION

W ITH recent research advances in Compressive Sensing
[1], lot of attention towards research on solving l1

norm equations of the type (1) have been received. Many
areas such as signal processing, image processing and machine
learning also find these types of problems highly important.

minu |u|1 + ‖Au − y‖2
2 (1)

In the recent past, a large number of approaches to solve
these problems have been published and more new methods
can be expected in the future. Among them Iterative Shrinkage
Thresholding Algorithm (ISTA) [2], Fast Iterative Shrinkage
Thresholding Algorithm (FISTA) [3], Bregman iteration [4]
are few to mention. All these algorithms are based on soft
shrinkage methods which has been found to be highly sucess-
ful.

Many problems in machine learning use norm minimization
for various reasons. Widely used and researched algorithms
such as LASSO [5] and 1-norm SVM [6] have found it as
a tool for sparseness and feature selections. In other recently
developed areas such as self-taught learning [7] and sparse
coding [8], the l1 regularization has played an important role.
It clearly shows that research on l1 minimization problems
has major importance to machine learning and development of
compressive sensing can greatly influence and benefit research
in many machine learning problems such as classification and
regression.

Several machine learning researchers have already started
to adapt novel compressive sensing algorithms for machine
learning including Koh, Kim and Boyd [9] who have devel-
oped a Logistic regression based classifiers and Langford and
Zhang [10] have used sparse gradient method for online learn-
ing. Inspired by these researches we have researched further
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developing a novel machine learning method using Bregman
iterations method. Our focus was mainly on classification
problem and we considered several aspects in designing a
robust classifier. Due to its robustness we considered kernel
classifier as SVM. Sparsity was another major factor we
considered where much research was directed towards loss
functions and shrinkage functions since they can be primarily
important for achieving high sparsity.

The rest the paper is strutured in the following manner, the
next section talks about the basic formulation of linearised
Bragman iteration method, followed by loss funciton and
shrinkage functions. Next section talks about experiments and
results and the final section talks about conclusions and future
works.

II. LINEARIED BREGMAN ITERATION

Among many recently developed Compressive Sensing
algorithms to solve (1) our attention was drawn towards
Bregman iteration [4] mainly due to its simplicity and its
flexibility in implementation. Closely related the Fixed Point
Continuation theory [11] also has laid a solid foundations
on iterative shrinkage mechanisms with global convergence.
Bregman iteration has been discussed in several papers but
we put forward the derivation here for the sake of completion
and readers are suggested to refer [4] for a comprehensive
treatment.

Considering the binary classification problem with data
{xi, yi} where i = 1..n with xi representing the data element
and their labels yi ∈ {−1, 1} we can define an optimisation
problem with 1-norm minimisation as follows, where w rep-
resent parameter to learn and L representing the loss function.

minw|w|1 + L(x,w, y) (2)

In Compressive Sensing the loss function L is taken as
‖Aw−y‖ which is equivalent to the least square error where A
contains the data elements. We can build a kernel classifier di-
rectly by replacing kernel elements with an appropriate kernel
function K(., .) (Gaussian kernel) [12] as Aij = K(xi, xj).
Though least square error type loss functions can be used
for classification, the most commonly used is the hinge loss
[13] which is a non-diferentiable function which makes it hard
to devise a good solution. Alternatively a more suitable loss
function that is differentiable in order to solve it easily such
as the generalized hinge loss is discussed in Section 3 can be
substituted.

Both machine learning and compressive sensing problems
can be generally represented by equation(3).
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minu {J(u) + H(u)} J(u) = μ ||u||1 H(u) = Loss Function
(3)

Solving equation (3) can be a difficult task and as proposed
in [4], linearisation is an efficient method in solving it. Using
the Bregman distance [4] at step k of an iteration we can
define a distance measure D(u, uk) as follows.

D(u, uk) := J(u) − J(uk)− < ∂J(uk), u − uk > (4)

Using Taylor series we can also approximate the H as in
(7) with an addition of a penaly term of 1

2δ‖u − uk‖2

H̃(u, uk) = H(uk)+ < ∇H(u), u − uk > +
1
2δ

‖u − uk‖2

(5)
Combining both (4) and (5) one can design the value

of uk+1 as a minimisation problem which can be further
simplified to (6).

uk+1 = argminuD(u, uk) + H̃(u, uk) (6)

Again by differentiating (6) with respect to u we arrive at
(7) with pk = ∂J(u)

0 = pk+1 − pk + ∇H(uk) +
1
δ
(uk+1 − uk)) (7)

By defining v as follows we can arrive at

vk = pk +
1
δ
uk (8)

vk+1 = vk − δ∇H(uk) (9)

uk+1 = δ· shrink(vk+1, μ) (10)

At each iteration uk+1 can be updated using a soft or a hard
shinkage method as in equation (10) until convergence.

The training process can be put forward as a simple
algorithms as given below.

Algorithm 1

v0 = 0
while not converged

vk+1 = vk − δ∇H(uk)
uk+1 = δ· shrink(vk+1, μ)

These type of shrinkage algorithms based on Bregman
iterations have been explained and their converge convergence
are proven in [4].
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Fig. 1. Loss functions used for clasification problems

III. LOSS FUNCTIONS

Many factors such as accuracy and sparsity in machine
learning problems depends on the selection of the loss func-
tion. Hinge loss [12] is commonly used with SVM for classi-
fication problems but since it is not differentiable it cannot be
directly used in our approach. We experimented with several
alternative loss functions such as the smooth hinge loss [13]
and squared hinge loss [10] which have been used in place of
the hinge loss but resulted in less accurate classifications and
less sparse solutions.

In search of a better loss function we recognized the
generalized hinge loss [13] as an ideal loss function (11) for
our problem since it is differentiable as shown in equation (12)
and can be well approximated to the hinge loss functions with
higher values of α (Fig 1)

hα(z) =

⎧⎨
⎩

α−1
α − z ifz ≤ 0

1
α+1 − zα+1 + α−1

α if 0 < z < 1
0 if z ≥ 1

(11)

h
′
α(z) =

⎧⎨
⎩

−1 if z ≤ 0
zα − 1 if 0 < z < 1

0 if z ≥ 1
(12)

Fig. 1 shows the different loss functions and its clear that
the generalized hinge loss approximate the hinge loss closely
compared to other loss functions such as squared hinge and
smooth hinge loss. This motivated us to use generalized hinge
loss with higher (α = 15) to build our classifier.

IV. SHRINKAGE FUNCTIONS

In iterative shrinkage problems their shrinkage functions is
a crucial component. Over the years researchers have proposed
soft [4] and hard [5] shrinkage functions. For both Bregman
iteration and Fixed Point methods soft shrinkage functions of
the type (13) have been used and their global convergence
has also been proven [4]. This type of shrinkage functions are
commonly widely used throughout compressive sensing and
inverse problems.
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Fig. 2. Soft shrinkage with μ = 4
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Fig. 3. Hard shrinkage with μ = 4, ν = 2

Inspired by [9] and [14] we experimented with alterna-
tive approaches of using hard shrinkage functions. Among
hard shrinkage functions we found that truncation methods
in [9] worked highly efficiently preserving the convergence
of the problem and with higher sparsity. The Fig. 2 shows
the soft shrinkage functions. Equaitons (14) and (15) show
hard shrinkage methods and Fig. 3 and Fig. 4 show their
respective graphs. μ and ν are user defined parameters to
control thresholding. In the next section we present details
of experiments that we carried with these shrinkage methods
and thier results.

uk+1
i = δ · soft shrink(vk

i , μ)
:= δ · sgn(vk

i )max{|vk
i | − μ}

=

⎧⎨
⎩

vk
i − μ, vk

i ∈ (μ,∞)
0, vk

i ∈ [−μ, μ]
vk

i + μ, vk
i ∈ (−∞,−μ)

(13)

uk+1
i = δ · hard shrink1(vk

i , μ, ν)
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Fig. 4. Hard shrinkage with μ = 4

:= δ · sgn(vk
i )max{|vk

i | − μ}

=

⎧⎨
⎩

vk
i − μ, vk

i ∈ (ν,∞)
0, vk

i ∈ [−ν, ν]
vk

i + μ, vk
i ∈ (−∞,−μ)

(14)

uk+1
i = δ · hard shrink2(vi, μ) =

{
0 vi ∈ [−μ, μ]
vi otherwise

(15)

V. EXPERIMENTS

We experimented our proposed classifiers with face recog-
nition using Shefield face database [15]. Our data set was
relatively small since it only used 100 training images and 575
test images. Our proposed classifier was used Gaussian kernels
[12] with data and for comparisons we used the standard SVM
Adatron classifiers [16]. Table 1 shows the results obtained
from experiments where it shows the classification accuracies
and average sparsity with different shrinkage functions of the
new method as well as the SVM. We used δ = 0.04 and
experiment with different values of μ and ν.

TABLE I
CLASSIFICATION RESULTS OF FACES

Classifier Avg. Sparsity Error %
Bregman with soft shrink 48 0.93

Bregman with hard shrink1 59 1.12
Bregman with hard shrink2 28 1.20

SVM 38 0.60

As we can see from the Table 1 our proposed classifier
perform well as a classifier since they all have less error
rates around 1%. But none of them performed better than
the standard SVM. Interestingly the soft shrink method has
shown less error compared to both hard shrinkage methods.
Among the hard shrinkage methods hard shrink1 has given
less a error rate compared to the other. When comparing
sparsity the hard shrink2 method has given higher sparsity
though it gives a worse error rate.
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As our second experiment we used NMIST hand written
digit classificaiton [17] using our method and SVM. As our
training set we took 100 images from digits and trained differ-
ent classifiers. For testing we took another 100 images to check
the classification accuracy of each classifier as shown in Table
2. Again we see that none of our algorithms can outperform
SVM though in general they all have close accuracy compared
to SVM. As in the easier case the soft shrink functions is
better in accuracy than the other two methods and in this case
it also achives a higher sparsity than other methods as well.

TABLE II
CLASSIFICATION RESULTS OF DIGITS

Classifier Avg. Sparsity Error %
Bregman with soft shrink 248 2.24

Bregman with hard shrink1 342 2.36
Bregman with hard shrink2 285 2.38

SVM 241 1.77

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a novel kernel based
classifier that based on Bregman iteration. Our experiments
have shown that our approach is a good classifier with high
accuracy but it cannot outperform the standard SVM classi-
fiers. Novelties that we propose in using generalized hinge
losses and hard thresholding has proven to achieve highly
sparse results. Further research can be carried out in designing
shrinkage methods probably with adaptive shrinkage limits
that can benefit in generating even more sparse results and
more accuracy.

One major aspect that we need to be investigated in con-
nection with our methods is its suitability with large scale
problems. In the recent published research in compressive
sensing and optimization there has been many methods pro-
posed to solve one norm minimization problems with faster
convergence rates. Among them Nestorov gradient [3] meth-
ods are highly promising methods.We believe that further
research in adapting these methods to build hybrid algorithms
in connection to ours would result in more efficient classifiers
that can be efficiently used for practical applications specially
to be used with large scale problems.
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