Search results for: Fluid Coupling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1110

Search results for: Fluid Coupling

1080 Optimization of Hydraulic Fluid Parameters in Automotive Torque Converters

Authors: S. Venkateswaran, C. Mallika Parveen

Abstract:

The fluid flow and the properties of the hydraulic fluid inside a torque converter are the main topics of interest in this research. The primary goal is to investigate the applicability of various viscous fluids inside the torque converter. The Taguchi optimization method is adopted to analyse the fluid flow in a torque converter from a design perspective. Calculations are conducted in maximizing the pressure since greater the pressure, greater the torque developed. Using the values of the S/N ratios obtained, graphs are plotted. Computational Fluid Dynamics (CFD) analysis is also conducted.

Keywords: Hydraulic fluid, Taguchi's method, optimization, pressure, torque.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3035
1079 Coupling Time-Domain Analysis for Dynamic Positioning during S-Lay Installation

Authors: Sun Li-ping, Zhu Jian-xun, Liu Sheng-nan

Abstract:

In order to study the performance of dynamic positioning system during S-lay operations, dynamic positioning system is simulated with the hull-stinger-pipe coupling effect. The roller of stinger is simulated by the generalized elastic contact theory. The stinger is composed of Morrison members. Force on pipe is calculated by lumped mass method. Time domain of fully coupled barge model is analyzed combining with PID controller, Kalman filter and allocation of thrust using Sequential Quadratic Programming method. It is also analyzed that the effect of hull wave frequency motion on pipe-stinger coupling force and dynamic positioning system. Besides, it is studied that how S-lay operations affect the dynamic positioning accuracy. The simulation results are proved to be available by checking pipe stress with API criterion. The effect of heave and yaw motion cannot be ignored on hull-stinger-pipe coupling force and dynamic positioning system. It is important to decrease the barge’s pitch motion and lay pipe in head sea in order to improve safety of the S-lay installation and dynamic positioning.

Keywords: S-lay operation, dynamic positioning, coupling motion; time domain, allocation of thrust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2738
1078 On the Flow of a Third Grade Viscoelastic Fluid in an Orthogonal Rheometer

Authors: Carmen D. Pricinâ, E. Corina Cipu, Victor Ţigoiu

Abstract:

The flow of a third grade fluid in an orthogonal rheometer is studied. We employ the admissible velocity field proposed in [5]. We solve the problem and obtain the velocity field as well as the components for the Cauchy tensor. We compare the results with those from [9]. Some diagrams concerning the velocity and Cauchy stress components profiles are presented for different values of material constants and compared with the corresponding values for a linear viscous fluid.

Keywords: Non newtonian fluid flow, orthogonal rheometer, third grade fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
1077 Study of the Electromagnetic Resonances of a Cavity with an Aperture Using Numerical Method and Equivalent Circuit Method

Authors: Ming-Chu Yin, Ping-An Du

Abstract:

The shielding ability of a shielding cavity with an aperture will be greatly degraded at resonance frequencies, and the resonance modes and frequencies are affected by aperture resonances and aperture-cavity coupling, which are closely related with aperture sizes. The equivalent circuit method and numerical method of Transmission Line Matrix (TLM) are used to analyze the effects of aperture resonances and aperture-cavity coupling on the electromagnetic resonances of a cavity with an aperture in this paper. Both analytical and numerical results show that the resonance modes of a shielding cavity with an aperture consist of cavity resonance modes and aperture resonance modes, and the resonance frequencies will shift with the change of the aperture sizes because of the aperture resonances and aperture-cavity coupling. Variation rules of electromagnetic resonances with aperture sizes for a cavity with an aperture are given, which will be useful for design of shielding cavities.

Keywords: Aperture-cavity coupling, equivalent circuit method, resonances, shielding equipment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
1076 Left Ventricular Model Using Second Order Electromechanical Coupling: Effects of Viscoelastic Damping

Authors: Elie H. Karam, Antoine B. Abche

Abstract:

It is known that the heart interacts with and adapts to its venous and arterial loading conditions. Various experimental studies and modeling approaches have been developed to investigate the underlying mechanisms. This paper presents a model of the left ventricle derived based on nonlinear stress-length myocardial characteristics integrated over truncated ellipsoidal geometry, and second-order dynamic mechanism for the excitation-contraction coupling system. The results of the model presented here describe the effects of the viscoelastic damping element of the electromechanical coupling system on the hemodynamic response. Different heart rates are considered to study the pacing effects on the performance of the left-ventricle against constant preload and afterload conditions under various damping conditions. The results indicate that the pacing process of the left ventricle has to take into account, among other things, the viscoelastic damping conditions of the myofilament excitation-contraction process.

Keywords: Myocardial sarcomere, cardiac pump, excitationcontraction coupling, viscoelasicity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384
1075 S-S Coupling of Thiols to Disulfides Using Ionic Liquid in the Presence of Free Nano-Fe2O3 Catalyst

Authors: Askar Sabet, Abdolrasoul Fakhraee, Motahahre Ramezanpour, Noorallah Alipour

Abstract:

An efficient and green method for oxidation of thiols to the corresponding disulfides is reported using ionic liquid [HSO3N(C2H4OSO3H)3] in the presence of free nano-Fe2O3 at 60°C. Ionic liquid is selective oxidant for S-S Coupling variety aliphatic and aromatic of thiols to corresponding disulfide in the presence of free nano-Fe2O3 as recoverable catalyst. Reaction has been performed in methanol as an inexpensive solvent. This reaction is clean and easy work-up with no side reaction.

Keywords: Thiol, Disulfide, Ionic liquid, Free Nano-Fe2O3, Oxidation, Coupling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757
1074 Computation of Induction Current in a Set of Dendrites

Authors: Sudhakar Tripathi, R. B. Mishra

Abstract:

In this paper, the cable model of dendrites have been considered. The dendrites are cylindrical cables of various segments having variable length and reducing radius from start point at synapse and end points. For a particular event signal being received by a neuron in response only some dendrite are active at a particular instance. Initial current signals with different current flows in dendrite are assumed. Due to overlapping and coupling of active dendrite, they induce currents in the dendrite segments of each other at a particular instance. But how these currents are induced in the various segments of active dendrites due to coupling between these dendrites, It is not presented in the literature. Here the paper presents a model for induced currents in active dendrite segments due to mutual coupling at the starting instance of an activity in dendrite. The model is as discussed further.

Keywords: Currents, dendrites, induction, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
1073 Volume Density of Power of Multivector Electric Machine

Authors: Aldan A. Sapargaliyev, Yerbol A. Sapargaliyev

Abstract:

Since the invention, the electric machine (EM) can be defined as oEM – one-vector electric machine, as it works due to one-vector inductive coupling with use of one-vector electromagnet. The disadvantages of oEM are large size and limited efficiency at low and medium power applications. This paper describes multi-vector electric machine (mEM) based on multi-vector inductive coupling, which is characterized by the increased surface area of ​​the inductive coupling per EM volume, with a reduced share of inefficient and energy-consuming part of the winding, in comparison with oEM’s. Particularly, it is considered, calculated and compared the performance of three different electrical motors and their power at the same volumes and rotor frequencies. It is also presented the result of calculation of correlation between power density and volume for oEM and mEM. The method of multi-vector inductive coupling enables mEM to possess 1.5-4.0 greater density of power per volume and significantly higher efficiency, in comparison with today’s oEM, especially in low and medium power applications. mEM has distinct advantages, when used in transport vehicles such as electric cars and aircrafts.

Keywords: Electric machine, electric motor, electromagnet, efficiency of electric motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990
1072 Heat Transfer, Fluid Flow, and Metallurgical Transformations in Arc Welding: Application to 16MND5 Steel

Authors: F. Roger, A. Traidia, B. Reynier

Abstract:

Arc welding creates a weld pool to realize continuity between pieces of assembly. The thermal history of the weld is dependent on heat transfer and fluid flow in the weld pool. The metallurgical transformation during welding and cooling are modeled in the literature only at solid state neglecting the fluid flow. In the present paper we associate a heat transfer – fluid flow and metallurgical model for the 16MnD5 steel. The metallurgical transformation model is based on Leblond model for the diffusion kinetics and on the Koistinen-Marburger equation for Marteniste transformation. The predicted thermal history and metallurgical transformations are compared to a simulation without fluid phase. This comparison shows the great importance of the fluid flow modeling.

Keywords: Arc welding, Weld pool, Fluid flow, Metallurgical transformations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
1071 Coupled Lateral-Torsional Free Vibrations Analysis of Laminated Composite Beam using Differential Quadrature Method

Authors: S.H. Mirtalaie, M. Mohammadi, M.A. Hajabasi, F.Hejripour

Abstract:

In this paper the Differential Quadrature Method (DQM) is employed to study the coupled lateral-torsional free vibration behavior of the laminated composite beams. In such structures due to the fiber orientations in various layers, the lateral displacement leads to a twisting moment. The coupling of lateral and torsional vibrations is modeled by the bending-twisting material coupling rigidity. In the present study, in addition to the material coupling, the effects of shear deformation and rotary inertia are taken into account in the definition of the potential and kinetic energies of the beam. The governing differential equations of motion which form a system of three coupled PDEs are solved numerically using DQ procedure under different boundary conditions consist of the combinations of simply, clamped, free and other end conditions. The resulting natural frequencies and mode shapes for cantilever beam are compared with similar results in the literature and good agreement is achieved.

Keywords: Differential Quadrature Method, Free vibration, Laminated composite beam, Material coupling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083
1070 Optimum Tuning Capacitors for Wireless Charging of Electric Vehicles Considering Variation in Coil Distances

Authors: Muhammad Abdullah Arafat, Nahrin Nowrose

Abstract:

Wireless charging of electric vehicles is becoming more and more attractive as large amount of power can now be transferred to a reasonable distance using magnetic resonance coupling method. However, proper tuning of the compensation network is required to achieve maximum power transmission. Due to the variation of coil distance from the nominal value as a result of change in tire condition, change in weight or uneven road condition, the tuning of the compensation network has become challenging. In this paper, a tuning method has been described to determine the optimum values of the compensation network in order to maximize the average output power. The simulation results show that 5.2% increase in average output power is obtained for 10% variation in coupling coefficient using the optimum values without the need of additional space and electro-mechanical components. The proposed method is applicable to both static and dynamic charging of electric vehicles.

Keywords: Coupling coefficient, electric vehicles, magnetic resonance coupling, tuning capacitor, wireless power transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167
1069 Evaluation of Geomechanical and Geometrical Parameters’ Effects on Hydro-Mechanical Estimation of Water Inflow into Underground Excavations

Authors: M. Mazraehli, F. Mehrabani, S. Zare

Abstract:

In general, mechanical and hydraulic processes are not independent of each other in jointed rock masses. Therefore, the study on hydro-mechanical coupling of geomaterials should be a center of attention in rock mechanics. Rocks in their nature contain discontinuities whose presence extremely influences mechanical and hydraulic characteristics of the medium. Assuming this effect, experimental investigations on intact rock cannot help to identify jointed rock mass behavior. Hence, numerical methods are being used for this purpose. In this paper, water inflow into a tunnel under significant water table has been estimated using hydro-mechanical discrete element method (HM-DEM). Besides, effects of geomechanical and geometrical parameters including constitutive model, friction angle, joint spacing, dip of joint sets, and stress factor on the estimated inflow rate have been studied. Results demonstrate that inflow rates are not identical for different constitutive models. Also, inflow rate reduces with increased spacing and stress factor.

Keywords: Distinct element method, fluid flow, hydro-mechanical coupling, jointed rock mass, underground excavations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 737
1068 Comparative Evaluation of Adaptive and Conventional Distance Relay for Parallel Transmission Line with Mutual Coupling

Authors: S.G. Srivani, Chandrasekhar Reddy Atla, K.P.Vittal

Abstract:

This paper presents the development of adaptive distance relay for protection of parallel transmission line with mutual coupling. The proposed adaptive relay, automatically adjusts its operation based on the acquisition of the data from distance relay of adjacent line and status of adjacent line from line circuit breaker IED (Intelligent Electronic Device). The zero sequence current of the adjacent parallel transmission line is used to compute zero sequence current ratio and the mutual coupling effect is fully compensated. The relay adapts to changing circumstances, like failure in communication from other relays and non - availability of adjacent transmission line. The performance of the proposed adaptive relay is tested using steady state and dynamic test procedures. The fault transients are obtained by simulating a realistic parallel transmission line system with mutual coupling effect in PSCAD. The evaluation test results show the efficacy of adaptive distance relay over the conventional distance relay.

Keywords: Adaptive relaying, distance measurement, mutualcoupling, quadrilateral trip characteristic, zones of protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3108
1067 Investigation of Shear Thickening Liquid Protection Fibrous Material

Authors: Po-Yun Chen, Jui-Liang Yen, Chang-Ping Chang, Wen-Hua Hu, Yu-Liang Chen, Yih-Ming Liu, Chin-Yi Chou, Ming-Der Ger

Abstract:

The stab resistance performance of newly developed fabric composites composed of hexagonal paper honeycombs, filled with shear thickening fluid (STF), and woven Kevlar® fabric or UHMPE was investigated in this study. The STF was prepared by dispersing submicron SiO2 particles into polyethylene glycol (PEG). Our results indicate that the STF-Kevlar composite possessed lower penetration depth than that of neat Kevlar. In other words, the STF-Kevlar composite can attain the same energy level in stab-resistance test with fewer layers of Kevlar fabrics than that of the neat Kevlar fabrics. It also indicates that STF can be used for the fabrication of flexible body armors and can provide improved protection against stab threats. We found that the stab resistance of the STF-Kevlar composite increases with the increase of SiO2 concentration in STF. Moreover, the silica particles functionalized with silane coupling agent can further improve the stab resistance.

Keywords: shear thickening fluid, SiO2, Kevlar, stab

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3242
1066 Development of Maximum Entropy Method for Prediction of Droplet-size Distribution in Primary Breakup Region of Spray

Authors: E. Movahednejad, F. Ommi

Abstract:

Droplet size distributions in the cold spray of a fuel are important in observed combustion behavior. Specification of droplet size and velocity distributions in the immediate downstream of injectors is also essential as boundary conditions for advanced computational fluid dynamics (CFD) and two-phase spray transport calculations. This paper describes the development of a new model to be incorporated into maximum entropy principle (MEP) formalism for prediction of droplet size distribution in droplet formation region. The MEP approach can predict the most likely droplet size and velocity distributions under a set of constraints expressing the available information related to the distribution. In this article, by considering the mechanisms of turbulence generation inside the nozzle and wave growth on jet surface, it is attempted to provide a logical framework coupling the flow inside the nozzle to the resulting atomization process. The purpose of this paper is to describe the formulation of this new model and to incorporate it into the maximum entropy principle (MEP) by coupling sub-models together using source terms of momentum and energy. Comparison between the model prediction and experimental data for a gas turbine swirling nozzle and an annular spray indicate good agreement between model and experiment.

Keywords: Droplet, instability, Size Distribution, Turbulence, Maximum Entropy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2527
1065 On Thermal Instabilities in a Viscoelastic Fluid Subject to Internal Heat Generation

Authors: Donna M. G. Comissiong, Tyrone D. Dass, Harold Ramkissoon, Alana R. Sankar

Abstract:

The B'enard-Marangoni thermal instability problem for a viscoelastic Jeffreys- fluid layer with internal heat generation is investigated. The fluid layer is bounded above by a realistic free deformable surface and by a plane surface below. Our analysis shows that while the internal heat generation and the relaxation time both destabilize the fluid layer, its stability may be enhanced by an increased retardation time.

Keywords: Viscoelastic fluid, Jeffreys' model, Maxwell model, internal heat generation, retardation time, relaxation time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
1064 Identifying Potential Partnership for Open Innovation by using Bibliographic Coupling and Keyword Vector Mapping

Authors: Inchae Park, Byungun Yoon

Abstract:

As open innovation has received increasingly attention in the management of innovation, the importance of identifying potential partnership is increasing. This paper suggests a methodology to identify the interested parties as one of Innovation intermediaries to enable open innovation with patent network. To implement the methodology, multi-stage patent citation analysis such as bibliographic coupling and information visualization method such as keyword vector mapping are utilized. This paper has contribution in that it can present meaningful collaboration keywords to identified potential partners in network since not only citation information but also patent textual information is used.

Keywords: Open innovation, partner selection, bibliographic coupling, Keyword vector mapping, patent network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
1063 CFD Simulation of Non-Newtonian Fluid Flow in Arterial Stenoses with Surface Irregularities

Authors: R. Manimaran

Abstract:

CFD simulations are carried out in arterial stenoses with 48 % areal occlusion. Non-newtonian fluid model is selected for the blood flow as the same problem has been solved before with Newtonian fluid model. Studies on flow resistance with the presence of surface irregularities are carried out. Investigations are also performed on the pressure drop at various Reynolds numbers. The present study revealed that the pressure drop across a stenosed artery is practically unaffected by surface irregularities at low Reynolds numbers, while flow features are observed and discussed at higher Reynolds numbers.

Keywords: Blood flow, Roughness, Computational fluid dynamics, Bio fluid mechanics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4440
1062 Computational Fluid Dynamics Simulation and Comparison of Flow through Mechanical Heart Valve Using Newtonian and Non-Newtonian Fluid

Authors: D. Šedivý, S. Fialová

Abstract:

The main purpose of this study is to show differences between the numerical solution of the flow through the artificial heart valve using Newtonian or non-Newtonian fluid. The simulation was carried out by a commercial computational fluid dynamics (CFD) package based on finite-volume method. An aortic bileaflet heart valve (Sorin Bicarbon) was used as a pattern for model of real heart valve replacement. Computed tomography (CT) was used to gain the accurate parameters of the valve. Data from CT were transferred in the commercial 3D designer, where the model for CFD was made. Carreau rheology model was applied as non-Newtonian fluid. Physiological data of cardiac cycle were used as boundary conditions. Outputs were taken the leaflets excursion from opening to closure and the fluid dynamics through the valve. This study also includes experimental measurement of pressure fields in ambience of valve for verification numerical outputs. Results put in evidence a favorable comparison between the computational solutions of flow through the mechanical heart valve using Newtonian and non-Newtonian fluid.

Keywords: Computational modeling, dynamic mesh, mechanical heart valve, non-Newtonian fluid, SDOF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
1061 Revealing Nonlinear Couplings between Oscillators from Time Series

Authors: B.P. Bezruchko, D.A. Smirnov

Abstract:

Quantitative characterization of nonlinear directional couplings between stochastic oscillators from data is considered. We suggest coupling characteristics readily interpreted from a physical viewpoint and their estimators. An expression for a statistical significance level is derived analytically that allows reliable coupling detection from a relatively short time series. Performance of the technique is demonstrated in numerical experiments.

Keywords: Nonlinear time series analysis, directional couplings, coupled oscillators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222
1060 Thermal Effect on Wave Interaction in Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry

Abstract:

There exist a wide range of failure modes in composite structures due to the increased usage of the structures especially in aerospace industry. Moreover, temperature dependent wave response of composite and layered structures have been continuously studied, though still limited, in the last decade mainly due to the broad operating temperature range of aerospace structures. A wave finite element (WFE) and finite element (FE) based computational method is presented by which the temperature dependent wave dispersion characteristics and interaction phenomenon in composite structures can be predicted. Initially, the temperature dependent mechanical properties of the panel in the range of -100 ◦C to 150 ◦C are measured experimentally using the Thermal Mechanical Analysis (TMA). Temperature dependent wave dispersion characteristics of each waveguide of the structural system, which is discretized as a system of a number of waveguides coupled by a coupling element, is calculated using the WFE approach. The wave scattering properties, as a function of temperature, is determined by coupling the WFE wave characteristics models of the waveguides with the full FE modelling of the coupling element on which defect is included. Numerical case studies are exhibited for two waveguides coupled through a coupling element.

Keywords: Temperature dependent mechanical characteristics, wave propagation properties, damage detection, wave finite element, composite structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177
1059 Extractability of Heavy Metals in Green Liquor Dregs using Artificial Sweat and Gastric Fluids

Authors: Kati Manskinen, Risto Pöykiö, Hannu Nurmesniemi

Abstract:

In an assessment of the extractability of metals in green liquor dregs from the chemical recovery circuit of semichemical pulp mill, extractable concentrations of heavy metals in artificial gastric fluid were between 10 (Ni) and 717 (Zn) times higher than those in artificial sweat fluid. Only Al (6.7 mg/kg; d.w.), Ni (1.2 mg/kg; d.w.) and Zn (1.8 mg/kg; d.w.) showed extractability in the artificial sweat fluid, whereas Al (730 mg/kg; d.w.), Ba (770 mg/kg; d.w.) and Zn (1290 mg/kg; d.w.) showed clear extractability in the artificial gastric fluid. As certain heavy metals were clearly soluble in the artificial gastric fluid, the careful handling of this residue is recommended in order to prevent the penetration of green liquor dregs across the human gastrointestinal tract.

Keywords: Dregs, non-process elements, pulping, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
1058 Improving the Frequency Response of a Circular Dual-Mode Resonator with a Reconfigurable Bandwidth

Authors: Muhammad Haitham Albahnassi, Adnan Malki, Shokri Almekdad

Abstract:

In this paper, a method for reconfiguring bandwidth in a circular dual-mode resonator is presented. The method concerns the optimized geometry of a structure that may be used to host the tuning elements, which are typically RF (Radio Frequency) switches. The tuning elements themselves, and their performance during tuning, are not the focus of this paper. The designed resonator is able to reconfigure its fractional bandwidth by adjusting the inter-coupling level between the degenerate modes, while at the same time improving its response by adjusting the external-coupling level and keeping the center frequency fixed. The inter-coupling level has been adjusted by changing the dimensions of the perturbation element, while the external-coupling level has been adjusted by changing one of the feeder dimensions. The design was arrived at via optimization. Agreeing simulation and measurement results of the designed and implemented filters showed good improvements in return loss values and the stability of the center frequency.

Keywords: Dual-mode resonators, perturbation element, perturbation theory, reconfigurable filters, software defined radio (SDR), cognitine radio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 577
1057 Effects of Coupling Agent on the Properties of Durian Skin Fibre Filled Polypropylene Composite

Authors: Hazleen Anuar, Nur Aimi Mohd Nasir, Yousuf El-Shekeil

Abstract:

Durian skin is a newly explores natural fibre potentially reinforced polyolefin for diverse applications. In this work, investigation on the effect of coupling agent, maleic anhydride polypropylene (MAPP) on the mechanical, morphological, and thermal properties of polypropylene (PP) reinforced with durian skin fibre (DSF) was conducted. The presence of 30 wt% DSF significantly reduced the tensile strength of PP-DSF composite. Interestingly, even though the same trend goes to PP-DSF with the presence of MAPP, the reduction is only about 4% relative to unreinforced PP and 18% higher than PP-DSF without MAPP (untreated composite or UTC). The used of MAPP in treated composite (TC) also increased the tensile modulus, flexural properties and degradation temperature. The enhanced mechanical properties are consistent with good interfacial interaction as evidenced under scanning electron microscopy.

Keywords: Durian skin fiber, coupling agent, mechanical properties, thermogravimetry analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
1056 Pulsating Flow of an Incompressible Couple Stress Fluid Between Permeable Beds

Authors: T. K. V. Iyengar, Punnamchandar Bitla

Abstract:

The paper deals with the pulsating flow of an incompressible couple stress fluid between permeable beds. The couple stress fluid is injected into the channel from the lower permeable bed with a certain velocity and is sucked into the upper permeable bed with the same velocity. The flow between the permeable beds is assumed to be governed by couple stress fluid flow equations of V. K. Stokes and that in the permeable regions by Darcy-s law. The equations are solved analytically and the expressions for velocity and volume flux are obtained. The effects of the material parameters are studied numerically and the results are presented through graphs.

Keywords: Pulsating flow, couple stress fluid, permeable beds, mass flux, shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
1055 A Finite Volume Procedure on Unstructured Meshes for Fluid-Structure Interaction Problems

Authors: P I Jagad, B P Puranik, A W Date

Abstract:

Flow through micro and mini channels requires relatively high driving pressure due to the large fluid pressure drop through these channels. Consequently the forces acting on the walls of the channel due to the fluid pressure are also large. Due to these forces there are displacement fields set up in the solid substrate containing the channels. If the movement of the substrate is constrained at some points, then stress fields are established in the substrate. On the other hand, if the deformation of the channel shape is sufficiently large then its effect on the fluid flow is important to be calculated. Such coupled fluid-solid systems form a class of problems known as fluidstructure interactions. In the present work a co-located finite volume discretization procedure on unstructured meshes is described for solving fluid-structure interaction type of problems. A linear elastic solid is assumed for which the effect of the channel deformation on the flow is neglected. Thus the governing equations for the fluid and the solid are decoupled and are solved separately. The procedure is validated by solving two benchmark problems, one from fluid mechanics and another from solid mechanics. A fluid-structure interaction problem of flow through a U-shaped channel embedded in a plate is solved.

Keywords: Finite volume method, flow induced stresses, fluidstructureinteraction, unstructured meshes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
1054 Power Integrity Analysis of Power Delivery System in High Speed Digital FPGA Board

Authors: Anil Kumar Pandey

Abstract:

Power plane noise is the most significant source of signal integrity (SI) issues in a high-speed digital design. In this paper, power integrity (PI) analysis of multiple power planes in a power delivery system of a 12-layer high-speed FPGA board is presented. All 10 power planes of HSD board are analyzed separately by using 3D Electromagnetic based PI solver, then the transient simulation is performed on combined PI data of all planes along with voltage regulator modules (VRMs) and 70 current drawing chips to get the board level power noise coupling on different high-speed signals. De-coupling capacitors are placed between power planes and ground to reduce power noise coupling with signals.

Keywords: Channel simulation, electromagnetic simulation, power-aware signal integrity analysis, power integrity, PIPro.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2238
1053 Effect of Surface-Modification of Indium Tin Oxide Particles on Their Electrical Conductivity

Authors: Y. Kobayashi, T. Kurosaka, K. Yamamura, T. Yonezawa, K. Yamasaki

Abstract:

The present work reports an effect of surface- modification of indium tin oxide (ITO) particles with chemicals on their electronic conductivity properties. Examined chemicals were polyvinyl alcohol (nonionic polymer), poly(diallyl dimethyl ammonium chloride) (cationic polymer), poly(sodium 4-styrene-sulfonate) (anionic polymer), (2-aminopropyl) trimethoxy silane (APMS) (silane coupling agent with amino group), and (3-mercaptopropyl) trimethoxy silane (MPS) (silane coupling agent with thiol group). For all the examined chemicals, volume resistivities of surface-modified ITO particles did not increase much when they were aged in air at 80 oC, compared to a volume resistivity of un-surface-modified ITO particles. Increases in volume resistivities of ITO particles surface-modified with the silane coupling agents were smaller than those with the polymers, since hydrolysis of the silane coupling agents and condensation of generated silanol and OH groups on ITO particles took place to provide efficient immobilization of them on particles. The APMS gave an increase in volume resistivity smaller than the MPS, since a larger solubility in water of APMS providing a larger amount of APMS immobilized on particles.

Keywords: Indium tin oxide, particles, surface-modification, volume resistivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1212
1052 Seasonal Heat Stress Effect on Cholesterol, Estradiol and Progesterone during Follicular Development in Egyptian Buffalo

Authors: Heba F. Hozyen, Hodallah H. Ahmed, S. I. A. Shalaby, G. E. S. Essawy

Abstract:

Biochemical and hormonal changes that occur in both follicular fluid and blood are involved in the control of ovarian physiology. The present study was conducted on follicular fluid and serum samples obtained from 708 buffaloes. Samples were examined for estradiol, progesterone, and cholesterol concentrations in relation to seasonal changes, ovarian follicular size, and stage of estrous cycle. The obtained results revealed that follicular fluid and serum levels of estradiol, progesterone, and cholesterol were significantly lower during summer and autumn when compared to winter and spring seasons. With the increase in follicular size, the follicular fluid levels of progesterone and cholesterol were significantly decreased, while estradiol levels were significantly increased. Estradiol and progesterone levels were significantly higher in follicular fluid than blood, while cholesterol was significantly lower in follicular fluid than serum. In conclusion, the current study threw a light on the hormonal changes in the follicular fluid and blood under the effect of heat stress which could be related to the low fertility of buffalo in the summer.

Keywords: Buffalo, follicular fluid, follicular development, seasonal changes, steroids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
1051 The Kinetic of Biogas Production Rate from Cattle Manure in Batch Mode

Authors: Budiyono, I N. Widiasa, S. Johari, Sunarso

Abstract:

In this study, the kinetic of biogas production was studied by performing a series laboratory experiment using rumen fluid of animal ruminant as inoculums. Cattle manure as substrate was inoculated by rumen fluid to the anaerobic biodigester. Laboratory experiments using 400 ml biodigester were performed in batch operation mode. Given 100 grams of fresh cattle manure was fed to each biodigester and mixed with rumen fluid by manure : rumen weight ratio of 1:1 (MR11). The operating temperatures were varied at room temperature and 38.5 oC. The cumulative volume of biogas produced was used to measure the biodigester performance. The research showed that the rumen fluid inoculated to biodigester gave significant effect to biogas production (P<0.05). Rumen fluid inoculums caused biogas production rate and efficiency increase two to three times in compare to manure substrate without rumen fluid. With the rumen fluid inoculums, gave the kinetic parameters of biogas production i.e biogas production rate constants (U), maximum biogas production (A), and minimum time to produce biogas (λ) are 3.89 ml/(gVS.day); 172.51 (ml/gVS); dan 7.25 days, respectively. While the substrate without rumen fluid gave the kinetic parameters U, A, and λ are 1.74 ml/(gVS.day); 73.81 (ml/gVS); dan 14.75 days, respectively. The future work will be carried out to study the dynamics of biogas production if both the rumen inoculums and manure are fed in the continuous system.

Keywords: rumen fluid, inoculums, anaerobic digestion, biogasproduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2946