
 

 

  
Abstract—CFD simulations are carried out in arterial stenoses 

with 48 % areal occlusion. Non-newtonian fluid model is selected for 
the blood flow as the same problem has been solved before with 
Newtonian fluid model. Studies on flow resistance with the presence 
of surface irregularities are carried out. Investigations are also 
performed on the pressure drop at various Reynolds numbers. The 
present study revealed that the pressure drop across a stenosed artery 
is practically unaffected by surface irregularities at low Reynolds 
numbers, while flow features are observed and discussed at higher 
Reynolds numbers.  
 

Keywords—Blood flow, Roughness, Computational fluid 
dynamics, Bio fluid mechanics.  

I. INTRODUCTION 
HE flow situation in stenosis models has previously been 
studied for different Reynolds number and different 

constrictions of the cross-sectional area. The steady state 
problem is easier to solve numerically and yet adequately 
describes the happening of flow and pressure around 
constrictions of blood vessels in the arterial pipes [1]. 
Measurement of velocity profiles in blood vessels has been 
carried out by means of pulsed ultrasound Doppler 
flowmeters. However, the space resolution of this instrument 
is poor, especially along the wall. CFD studies are also 
performed using commercial packages in obtaining the 
knowledge on flowfield [2]. 

Experimental investigations which have been carried out on 
physical models have mainly been concerned with measuring 
flow velocities by LASER Doppler flow meter, visualization 
of streamlines either by contrast dye or hydrogen bubbles [3]. 
The large amount of data which has to be collected in order to 
map velocity profiles by the digital instruments especially for 
non-newtonian flow has never been attempted before [4].   

The idea behind this paper is to compare the effects of 
different non-newtonian models on the wall shear stress 
distributions in the right coronary artery. The studies in the 
coronary artery during the cardiac cycle have already been 
carried out [5], [6]. The comparison among non-newtonian 
 models such as Herschel-Bulkley, Carreau model and 
power  law will allow us to assess whether or not it is 
necessary to include non-Newtonian blood models  in 
modelling blood flow in coronary arteries [7].The flow of 
blood within arteries has long been associated with the 
formation of lesions and, eventually, arterial narrowing. 
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Experimental and numerical investigation of these 
relationships has been the subject of recent reviews [8],[9] & 
[10]. Much of the early numerical modelling was focused on 
the carotid artery bifurcation ([11],[12],[13],[14 [15],[16]), 
but, recently, this focus has shifted to the right coronary 
artery, both in terms of simulation [17],[18],[19] & [20]. It is 
well known that blood is a non-Newtonian fluid [21] and 
several models  have been proposed to predict the stress–
strain relationship for blood [22]. However, some of these 
models is generally accepted as a reflection of the true 
behaviour of the rheology of blood. This is, perhaps, the 
reason that blood should be chosen as a non-newtonian fluid 
rather than a Newtonian fluid in simulations of blood flow. It 
is also generally accepted that blood behaves as a non-
Newtonian fluid at shear rates above 100 s-1 [23] which may 
account for the Newtonian approximation in flow simulations 
at larger Reynolds numbers. However, studies in bifurcations 
and long arteries, especially when the flow stops, there are 
periods of time where the shear rate is above 100 s-1 [24] and 
non-Newtonian effects could become important.  There does 
not appear to be a consensus in the literature on the 
importance of non-Newtonian effects on steady flows in large 
arteries. Some studies found non-Newtonian theology as 
important [25],[26] and [27], while others found that it is 
relatively unimportant [28],[29][30] in determining flow 
patterns in large arteries. The research paper by [31] contains 
a good discussion of possible reasons for this discrepancy, 
particularly in the light of their definition of the non-
Newtonian importance factor. A more recent comparison has 
been conducted for flow through a curved tube [32], which 
highlights several differences between Newtonian and non- 
Newtonian flow patterns. The paper also describes the 
calculation of an effective Newtonian viscosity which 
captures the non-Newtonian effects for this flow situation. 
Comparisons between the various arteries and blood viscosity 
models are presented in terms of wall shear stress distributions 
as it is believed that wall shear stress is a significant factor in 
the onset of coronary artery disease [33],[34]&[35]. Further 
comparisons are presented in terms of the recently generalized 
[36] local and global non-Newtonian importance factors [37].  
It is worth noting that the various non-Newtonian blood 
models are obtained by parameter fitting to experimental 
viscosity data obtained at certain shear rates under steady-state 
conditions [38]. Here, it is assumed that these models can be 
used under steady as well as pulsatile flow conditions. The 
work here, however, involves a comparison of wall shear 
stress distributions, which are obtained using both the 
Newtonian and non- Newtonian models of blood viscosity. 
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So, while major differences between the results of these two 
models would need to be examined in the light of the above 
comments, similar results for the models would indicate that 
this assumption is most likely a reasonable one. 
 

II. BACKGROUND 
 

The model for blood flow through a mild arterial stenosis 
originates from an in-vitro investigation of flow in a mildly 
atherosclerotic main coronary artery casting of man 
conducted by Back et al. (1984) [1]. Since the local cross 
sections were generally noncircular and the orientation of 
the axis of the cast varied along the vessel, experiments 
were also carried out in an analogous straight and 
axisymmetric model having the same cross-sectional area 
variation as the actual cast [3]. In the present study, we 
follow Johnston and Kilpatrick [6] and restrict the 
computational flow analysis to the axisymmetric stenosis 
model. 

 
III MATHEMATICAL MODELLING 

 
It will be assumed that the flow of blood in the right 

coronary artery is governed by the Navier–Stokes 
equations. 

 

   PVV
t
V

∇−∇−=∇+
∂
∂ τρ .).(          (1) 

and the continuity equation for an incompressible fluid.  
    

    0. =∇ V                   (2) 
 
In these equations, V is the two-dimensional velocity 
vector, t the time, P the pressure, ρ the density and τ the 
stress tensor. Writing the Navier–Stokes equations in this 
form allows the flexibility to use an arbitrary non-
Newtonian blood model. However further in the 
experiments, Back et al. (1984)[1] used sugar water 
solutions as test fluids to simulate the viscosity of blood. 
Here, we simply follow Johnston and Kilpatrick (1991) [6] 
and assume that the fluid is incompressible and non-
Newtonian. The steady flow through the stenosed artery 
model is therefore governed by the stationary conservation 
equations for mass and momentum, i.e. the Navier Stokes 
equations. The equations were solved using the 
commercially available software package Ansys FLUENT 
6.3 [2] for performing computational fluid dynamics 
simulations. The implications besides the substantial 
guiding impact of the stenosis wall, along which 
conventional no-slip boundary conditions are imposed, the 
mathematically formulated flow problem is controlled 
solely by the Reynolds number  

 

μ
ρ DV

=Re                   (3) 

 

Where ρ and μ are the density and the dynamic viscosity of 
the fluid considered. 

 
IV. GEOMETRICAL MODEL 

 
The three geometrically different models of the stenosis 
shape shown in Fig. 1 have been examined, all with 48% 
areal occlusion and thus classified as mild. The first shape 
considered is the most commonly used cosine curve 

 

 
 

Fig. 1 Comparison of the three different stenosis models 
considered. Dimensionless radial position R(z)/D versus 

dimensionless axial position 
 

Radius R is given as function of Z the axial length  
 

)/))2(cos(1(*5.05.0)( LLZDZR −+−= πδ  
 (4) 

LZfor ≤≤0  
 
originally suggested by Young (1968) where L is the length 
and δ is the maximum width of the stenosis. Thus, with δ = 

0.138D, the area occlusion  2)/21(1 Dδ−−  becomes 
0.48. The second geometrical model considered is the 
straight axisymmetric model of Back et al. (1984) [1], 
which mimics real surface irregularities since the actual 
axial variation of the cross-sectional area of a left circum-
flex coronary artery casting from a human cadaver is 
retained. The profile of this irregular stenosis model has 
been provided both by Back et al. (1984) [1] and Johnston 
and Kilpatrick (1991) [6]. Finally, a smooth stenosis model 
will be studied. This new model exhibits the same general 
form as the irregular stenosis model, but surface 
irregularities or roughness elements are absent. This 
stenosis model can therefore be considered as smooth, but 
in contrast to the cosine-shaped model, the profile of this 
stenosis is no longer symmetric about its centre (i.e. the 
narrowest point). The profiles of the cosine-shaped, the 
irregular and the smooth stenoses are compared in Fig. 1. 
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V. VISCOSITY MODELS 
The mathematical model, i.e. the Navier Stokes 

equations, is solved numerically by means of a finite 
volume method using the commercially available Ansys 
FLUENT package. The element mesh for each geometrical  
configuration is constructed with the GAMBIT (Fluent 
Inc.). SIMPLE algorithm is employed for solving the 
Navier-Stokes equations for incompressible fluid. The 
solution is marched towards steady state and residuals are 
monitored until it reaches the convergence criterion of 10-6. 
Grid independent studies are performed and found that the 
interior domain of 2 lakh cells provide a smooth solution 
and higher number of cells resulted in same situation as 
found with 2 lakh cells.  The main consideration in this 
paper is about the usage of non- Newtonian fluid models 
and they are briefly described below. 

 
Herschel Bulkley Model 

         

 
 

where Π is the second invariant of the rate-of-strain tensor: 

 
 

If n=1 and τ0 = 0, this model reduces to the Newtonian fluid. 
If n<1 the fluid is shear-thinning, while n>1 produces a shear-
thickening fluid. The limiting viscosity μ0 is chosen such that 

. A large limiting viscosity means that the 
fluid will only flow in response to a large applied force. This 
feature captures the Bingham-type behaviour of the fluid. 
 
Carreau Model : In this type, a generalized Newtonian fluid 
where viscosity, , depends upon the shear rate, , by this 

equation:  Where: μ0, λ and n are 
material coefficients. At low shear rate ( ) Carreau 
fluid behaves as a Newtonian fluid and at high shear rate 
( ) as a power-law fluid. 
 
Non-Newtonian power law : A Power-law fluid, or the 
Ostwald–de Waele relationship, is a type of generalized 
Newtonian fluid for which the shear stress, τ, is given by 
velocity gradient of power ‘n’ with μ is the flow consistency 
index (SI units Pa•sn), ∂u/∂y is the shear rate or the velocity 
gradient perpendicular to the plane of shear (SI unit s−1), and n 
is the flow behaviour index (dimensionless).  The quantity  

represents an apparent or effective viscosity 
as a function of the shear rate (SI unit Pa•s).  

VI. RESULTS AND DISCUSSION 
Three cases are considered here for various Reynolds 

numbers. The non-dimensional pressure drop is calculated for 
different Reynolds number as shown in Fig.2 for three 
different viscosity models considered. The Carreau model 
predicts the flow compared to data provided by the 
experiments [1]. However, other models did follow the trend 
but still lack in accuracy. 
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Fig. 2 Non-dimensional drop versus Reynolds number for different 

viscosity models 
 
The non-dimensional pressure drop is plotted in Fig. 3 for 

different geometries considered before. The cosine shaped 
profile predicts the flow better as compared to smooth and 
irregular geometries at higher Reynolds numbers.  
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Fig. 3 Non-dimensional drop versus Reynolds number for different 

geometries 
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Fig. 4 Dimensionless wall shear stress versus non-dimensional 
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axial length at Re = 10 for different geometries 

 The shear stress varies correspondingly for different 
geometries chosen and plotted in Fig. 4. The cosine profile 
shows the highest stress among the geometries considered at 
Re=10. The irregular geometry shows higher stress at higher 
Reynolds number (Re=1000) in the Fig. 5. This is because of 
the flow is getting affected due to surface irregularities as 
shear stress is directly proportional to friction factor in a pipe 
flow (Hagen Poiseuille formula). Figures 4 and 5 are plotted 
for Carreau model and different geometries. The 
dimensionless center line velocity is calculated and plotted in 
figures 6 and 7 for Newtonian and Carreau models at Re = 10 
and 1000. It can be seen that Carreau model slightly peaks at 
the middle length of stenoses and considered to be prominent.  
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Fig. 5 Dimensionless wall shear stress versus non-dimensional 

axial length at Re = 1000 for different geometries 
 
The contours for cosine shaped profile following Carreau 
model are shown in figures 8, 9, 10, 11 and 12. The 
deformation of fluid become maximum at the throat of the 
stenoses as seen in Fig. 8. The radial velocity gradients  
(dv/dx) are negligible and can be ignored compared to dv/dy. 
The axial velocity gradients are found to be higher near the 
axis at the middle of stenoses and lower near the wall. The 
radial velocity in Fig. 12 is shown contrary of Fig. 9 so that  
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Fig. 6 Dimensionless center-line velocities versus non dimensional 

axial length at Re = 10 
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Fig. 7 Dimensionless center-line velocities versus non-dimensional 

axial length at Re = 1000 
 
the summation of quantities du/dx and dv/dy should be equal 
to zero according to continuity equation. The dimensionless 
vorticity contours represent the spin rate of fluid particles in 
the domain. Because of the nature of rotational flow at the 
throat, the circulation of blood in this region is enhanced. The 
diverging part contains a little recirculation region as evident 
in Fig. 14. This is due to the larger divergence angle and flow 
leads to turbulent regime. The suitability of a turbulence in 
predicting the flow at this zone may throw light in further 
research and reduce the lacunae. The simulation performed in 
this case presents a situation where flow can be reasonably 
predicted with Carreau model appropriate to the experimental 
data discussed in the review [10]. 

 
 
Fig.  8 Dimensionless shear strain rate (du/dy+dv/dx) contours at Re 

= 1000 for a Cosine geometry and Carreau model 
 

 
 
Fig. 9 Dimensionless axial velocity gradient contours (du/dx) at Re = 

1000 for a Cosine geometry and Carreau model 
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Fig. 10 Dimensionless radial velocity gradient (dv/dx) contours at Re 

= 1000 for a Cosine geometry and Carreau model 
 

 
Fig. 11 Dimensionless axial velocity gradient (du/dy) contours at Re 

= 1000 for a Cosine geometry and Carreau model 
 

 
Fig. 12 Dimensionless axial velocity gradient (dv/dy) contours at Re 

= 1000 for a Cosine geometry and Carreau model 
 

 
Fig. 13Dimensionless vorticity contours (dv/dx - du/dy) at Re = 1000 

for a Cosine geometry and Carreau model 
 

 
Fig. 14 Recirculation zone in the diverging part at Re = 1000 for a 

Cosine geometry and Carreau model 
 

VII. CONCLUSION 
 
It is observed from this study that the rheological  

properties of blood can significantly affect the flow 
phenomena. For the steady state case, the results indicate that 
the non-Newtonian effects weaken the distortion of flow 
pattern, pressure distribution and wall shear stress  associated 
with the areal occlusion of 48 % in arterial stenosis. As 
Reynolds number increases, the pressure drop decreases 
independent of non-newtonian models, whereas in Carreau 
model predicts closer to the experimental results. Further, the 
contours of wall shear stress is prominent between two 
different Reynolds numbers for the Carreau model selected, 
which predicts the experimental data. A small recirculation 
region is found which may affect the flow in coronoid artery. 

Carreau model gives rise to stronger vorticity production at 
the throat, and the streamlines and velocity profiles indicate 
that the flow patterns remain in a disturbed state over a long 
distance. The pressure drop and the wall shear stress are 
smaller for the Newtonian cases, as in the steady flow. The 
results demonstrate that the Carreau model is capable of 
predicting the haemodynamic features most interesting to 
physiologists. It can be used to predict fast stenotic flow 
patterns on an individual basis. It can also be used for 
studying other parametric effects. 
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