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Abstract—The Bénard-Marangoni thermal instability problem for
a viscoelastic Jeffreys’ fluid layer with internal heat generation is
investigated. The fluid layer is bounded above by a realistic free
deformable surface and by a plane surface below. Our analysis
shows that while the internal heat generation and the relaxation time
both destabilize the fluid layer, its stability may be enhanced by an
increased retardation time.
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I. INTRODUCTION

THE phenomenon of thermal convection was first recog-
nised by Count Rumford in 1797 and James Thomson

in 1882 but the earliest set of experiments to demonstrate the
onset of thermal instability in fluid was conducted by Bénard
in 1900. Bénard exhibited the spontaneous formation of cells
in a layer of fluid heated from below [1]. In 1916, Lord
Rayleigh being motivated by the work of Bénard, went on
to lay the theoretical foundation for the study of convective
instability [2]. Scores of papers on thermal convection then
followed his first paper. However in 1958, Pearson was the first
to neglect the previous explanation of buoyancy and provide a
new explanation for the instability in a thin fluid layer based on
a surface-tension driven convection [3]. The instability caused
by buoyancy was referred to as the Rayleigh-Bénard effect
while the term Marangoni instability was used for surface-
tension driven convection.

The term Bénard-Marangoni instability began to be used
after Nield discovered the mutual influence of both buoyancy
and surface-tension driven forces on the stability limit of a
fluid [4]. This led to numerous studies being done on Bénard-
Marangoni problems worldwide. However, these studies did
not examine the possibility of oscillatory instabilities. It was
Benguria and Depassier who first studied the existence of
oscillatory instabilities in the combined Bénard-Marangoni
problem for a Boussinesq fluid bounded above by a free
deformable surface [5]. This work was studied numerically by
Pérez-Garcı́a and Carneiro who found examples of situations
in which there was competition between a steady and an
oscillatory mode and between two oscillatory modes at the
onset of convection when the layer was heated from above
[6]. A numerical study of the stability of a viscoelastic fluid
layer bounded above by a free deformable surface was later
done by Ramkissoon et al. [7].
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Research has also been conducted with the consideration of
internal heat generation in the fluid undergoing the Bénard-
Marangoni convection effect. Sparrow, Goldstein and Johnson
and Roberts analysed the thermal instability in a horizontal
fluid layer with the nonlinear temperature distribution which
was created by an internal heat generation [8]. The study
was extended to examine the fluid in a porous medium by
several authors (see for example [9], [10] and [11]). Char and
Chiang performed a stability analysis of this problem with
a deformable surface [12]. This knowledge can be applied
to a number of engineering problems like oil extraction
from porous media, energy storage in molten salts, crystal
growth in space and chemical engineering of paints, colloids
and detergents. Char, Chiang and Jou also did an oscil-
latory instability analysis of Bénard-Marangoni convection
in a rotating fluid with internal heat generation [13]. The
stabilization of thermocapillary instability in a fluid layer with
an internal heat source was examined by Hashim, Othman
and Kechil [14]. Nanjundappa et al. researched the effect of
internal heat generation on the onset of Brinkman-Bénard
convection in a ferrofluid saturated porous layer [15]. The
free convection boundary layer flow of a viscoelastic fluid in
the presence of heat generation was recently investigated by
Abdul, Mohammed and Sharidan [16]. Here, the problem of
free convection boundary layer flow of viscoelastic fluid past
a horizontal circular cylinder with the constant temperature in
the presence of heat generation was examined.

We consider the onset of overstability in a layer of Jeffreys’
viscoelastic fluid with a free deformable upper surface and a
lower plane surface when subjected to internal heat generation.
When the retardation time is set to zero, we obtain the
results for the simpler Maxwell viscoelastic model. When the
relaxation and retardation times are both taken to be zero, we
recover the results for a Newtonian fluid layer with a free
deformable upper surface and a lower plane surface when
subjected to internal heat generation. Our goal is to determine
how the internal heat generation moderates the impact of the
relaxation and retardation times on the onset of overstability.

II. GOVERNING EQUATIONS

A horizontal layer of viscoelastic fluid initially at rest
between z = 0 and z = d acted upon a gravitational field
g = −g ẑ and subjected to internal heat generation, q, is
used. The lower surface is plane (either rigid or stress-free)
and a perfect thermal conductor while the upper surface is
free, deformable and in contact with an ambient gas which
exerts a constant pressure pa on it. When motion occurrs, the
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free surface is deformed. The Boussinesq approximation is
assumed so that the governing equations of the fluid are

∇.v = 0, (1)

ρ0
dv

dt
= −∇p+ gρ+ ∇ · τ, (2)

dT

dt
= κ∇2T + q, (3)

ρ = ρ0[1 − α(T − T0)], (4)

ξ = ξ0 − ξ(T − T0), (5)

while the constituive equation for the viscoelastic fluid is(
1 + λ1

∂

∂t

)
τ =

(
1 + λ2

∂

∂t

)[
∇v + (∇v)T

]
,

with the convective derivative

d

dt
=

∂

∂t
+ v.∇

Here p, T, ρ, τ, ξ and v denote the pressure, temper-
ature, density, surface tension, the extra-stress tensor and
fluid velocity respectively. The quantities ρ0, ξ0 and T0 are
reference values and κ, α, γ, λ1, λ2, μ and q are fluid
constants representing thermal diffusitivity, thermal expansion
coefficient, rate of change of surface tension with temperature,
the relaxation time, the retardation time, viscosity and internal
heat generation. Motion is restricted to two dimensions so that
v = (u, 0, w).

To analyse the boundary conditions on the more complex
upper surface z = 1+η, the unit normal and tangential vectors
are considered

n =

(
− ∂η

∂x
, 0, 1

)
N

, (6)

t =

(
1, 0, ∂η

∂x

)
N

, (7)

where

N =

√
1 +

(
∂η

∂x

)2
.

The kinematic stress conditions at the surface are

w =
∂η

∂t
+ u

∂η

∂x
, (8)

(S′′

ij − S′

ij)nj = −
ξ

N3

∂2η

∂x2
ni − ξ,ktkti, (9)

where ′′ and ′ represent the air and fluids regions respectively
and

Sij = −pδij + τij .

Note that equation (9) can also be written as:

(p− pa)δijnj − τijnj = −
ξ

N3

∂2η

∂x2
ni − ξ,ktkti.

The heat flux equation is given as

κ∇T ′.n̂ + hT ′ = 0

where h is the convective heat transfer coefficient (also known
as the film coefficient) and

T ′ = T − T0.

These equations are linearized around the static solution
and all perturbations are assumed to evolve in time as eλt

and in the horizontal variable as eiax. The equations for the
perturbations reduce to:

(
D2 − a2

) [
D2 − a2 −

λ(1 + λL1)
σ(1 + λL2)

]
ψ(z)

= iaR (θ(z))
(1 + λL1)
(1 + λL2)

, (10)

(
D2 − a2 − λ

)
θ(z) = (1 −Q) iaψ(z), (11)

where θ(z) is the amplitude of the temperature perturba-
tion, ψ(z) is the amplitude of the streamfunction such that
ψ(x, z, t), v = (ψz, 0,−ψx), and D is the derivative with
respect to the vertical variable z.

The linearized boundary conditions on the upper surface
z = 1 + η are

λ

[
D2 − 3a2 −

λ(1 + λL1)
σ(1 + λL2)

]
Dψ

−a2
(1 + λL1)
(1 + λL2)

(
σG+

a2

C

)
ψ = 0, (12)

(D2 + a2)ψ −

[
RΓ (1 +Q)(
σG+ a2

C

)
]⎡⎣ D2 − 3a2

−
λ(1 + λL1)
σ(1 + λL2)

⎤
⎦Dψ

+ia
(1 + λL1)
(1 + λL2)

RΓθ = 0, (13)

Dθ +Bi

[
θ +

iaψ

λ
(1 +Q)

]
= 0. (14)

The boundary conditions on the lower surface z = 0 are

ψ = Dψ = θ = 0, (15)

if the surface was rigid with no slip and

ψ = D2ψ = θ = 0, (16)

if it is stress-free. For the purpose of our analysis, we define
the following dimensionless variables:

The Prandtl number,σ =
ν

κ
whereν =

μ

ρ0
.

The Rayleigh number, R =
gαd 3ΔT

κν
.

The Capillary number, C =
μκ

ξ0d
.

The Galileo number, G =
gd 3

ν2
.

Internal heating, Q =
qd 2

2κΔT
.

The non-dimensional relaxation time, L1 =
λ1κ

d 2
.
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The non-dimensional retardation time, L2 =
λ2κ

d 2
.

The Biot number, Bi =
hd

κ
.

The Marangoni number, M = ΓR,

where Γ =
γ

ρ0gαd 2
.

Equations (10) and (11) subject to boundary conditions (12)
- (15) constitute the problem to be solved for a rigid lower
surface. Note that if L1 = L2 and Q = 0, the Newtonian
model with no internal heat generation studied by Benguria et
al. [5] is recovered, while if we set L2 = 0 and Q = 0, we
obtain the results for the Maxwell model with no internal heat
generation studied by Ramkissoon et al. [7].

Next, the temperature variable is eliminated to yield an
equation for ψ

ψ

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
D2 − a2

) (
D2 − a2 − λ

)
·

[
D2 − a2 −

λ (1 + λL1)
σ(1 + λL2)

]

+a2R (1 −Q)
(

1 + λL1

1 + λL2

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= 0, (17)

subject to the following boundary conditions on z = 1

(
D2 − a2

) [
D2 − a2 −

λ(1 + λL1)
σ(1 + λL2)

]
Dψ

+Bi

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
D2 − a2

) [
D2 − a2 −

λ(1 + λL1)
σ(1 + λL2)

]

−

Ra2 (1 +Q)
(1 + λL1)
(1 + λL2)

λ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 0, (18)

λ

[
D2 − 3a2 −

λ(1 + λL1)
σ(1 + λL2)

]
Dψ

−a2
(1 + λL1)
(1 + λL2)

(
σG +

a2

C

)
ψ = 0, (19)

(
D2 + a2

)
ψ −

⎡
⎢⎢⎣ ΓR (1 +Q)(

σG+
a2

C

)
⎤
⎥⎥⎦
⎡
⎣ D2 − 3a2

−
λ(1 + λL1)
σ(1 + λL2)

⎤
⎦Dψ

+Γ
(
D2 − a2

) [
D2 − a2 −

λ(1 + λL1)
σ(1 + λL2)

]
ψ = 0. (20)

On the bottom surface, at z = 0,

(
D2 − a2

) [
D2 − a2 −

λ(1 + λL1)
σ(1 + λL2)

]
ψ = 0, (21)

and either
ψ = Dψ = θ = 0 (22)

for a rigid surface or

ψ = D2ψ = θ = 0 (23)

for a stress free plane surface.

The solution for ψ may be written as

ψ =
3∑

i=1

[Ai sinh(αiz) +Bi cosh(αiz)] , (24)

where the αi’s are the three different roots of

(α2 − a2)(α2 − a2 − λ)
[
α2 − a2 −

λ(1 + λL1)
σ(1 + λL2)

]

+a2R (1 −Q)
(1 + λL1)
(1 + λL2)

= 0. (25)

Substituing for ψ into equations (18) - (22), provided six
homogeneous equations to determine the coefficients Ai and
Bi. A non-trivial solution of the system arose when the
determinant of the coefficients vanished. This generates the
characteristic equation from which the eigenvalues λ and R

may be obtained. Considering equations (17) - (21) and (23)
it can be shown that the determinant can be written as

Df = [grh], (26)

where [grh] denotes the box product g.(r × h) and g =
[g(α1), g(α2), g(α3)]. This same notation was used for the
other vectors. If the lower bottom was rigid, using equations
(17) - (22), the determinant can be reduced to

Dr = [pny][αhr] + [sny][αgh] + [lny][αrg], (27)

where

α = (α1, α2, α3), (28)

n = (1, 1, 1), (29)

y(α) = α2
[
α2 − 2a2 −

λ(1 + λL1)
σ(1 + λL2)

]
, (30)

h(α) = λ

[
α2 − 3a2 −

λ(1 + λL1)
σ(1 + λL2)

]
α cosh(α)

−a2
(1 + λL1)
(1 + λL2)

(
σG+

a2

C

)
sinh(α), (31)

l(α) = λ

[
α2 − 3a2 −

λ(1 + λL1)
σ(1 + λL2)

]
α sinh(α)

− a2
(1 + λL1)
(1 + λL2)

(
σG+

a2

C

)
cosh(α), (32)

r(α) = α
(
α2 − a2

) [ α2 − a2

−λ(1+λL1)
σ(1+λL2)

]
cosh(α)

+Bi

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(
α2 − a2

)⎡⎣ α2 − a2

−
λ(1 + λL1)
σ(1 + λL2)

⎤
⎦

−
Ra2(1+Q)

(1+λL1)
(1+λL2)

λ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
sinh(α), (33)
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s(α) = α
(
α2 − a2

)⎡⎣ α2 − a2

−
λ(1 + λL1)
σ(1 + λL2)

⎤
⎦ sinh(α)

+Bi

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(
α2 − a2

)⎡⎣ α2 − a2

−
λ(1 + λL1)
σ(1 + λL2)

⎤
⎦

−
Ra2(1+Q)

“
1+λL1
1+λL2

”

λ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
cosh(α),

(34)

g(α) =

⎧⎪⎨
⎪⎩

(
α2 + a2

)
+Γ
(
α2 − a2

) [ α2 − a2

−λ(1+λL1)
σ(1+λL2)

] ⎫⎪⎬
⎪⎭ sinh(α)

− ΓRα (1 +Q)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
α2 − 3a2

−λ(1+λL1)
σ(1+λL2)

]
(
σG+ a2

C

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
cosh(α), (35)

p(α) =

{(
α2 + a2

)
+ Γ

(
α2 − a2

) [ α2 − a2

−λ(1+λL1)
σ(1+λL2)

]}
cosh(α)

− ΓRα (1 +Q)

⎧⎨
⎩
[
α2 − 3a2 − λ(1+λL1)

σ(1+λL2)

]
(
σG+ a2

C

)
⎫⎬
⎭ sinh(α).

(36)

The eigenvalues λ and R are then obtained by solving Df = 0
or Dr = 0. Finally, we utilize Newton’s method to to generate
representative marginal curves for this problem. The critical
Rayleigh number was obtained by finding the minimum R

value of the corresponding marginal curves. By varying the
parameters L1, L2, Q and observing the effect this has on the
value of the critial Rayleigh number, we are able to determine
the effect of the relaxation time, the retardation time, and the
internal heat generation on the thermal stability of the system.

III. RESULTS AND DISCUSSION

The term that measures the degree of surface deformation
is
(
σG+ a2

C

)
. For simplicity, 1

C
= 0 is used so that the effect

of surface deformation is measured only by the value of σG.
Therefore as

(
σG+ a2

C

)
→ ∞, it can be deduced that the

surface deformation is negligible from equation (19). Since it
is assumed that the surface is a very good conductor, the Biot
number is also negligible in this analysis, as the thickness of
the non-Newtonian fluid layer is considered to be thermally
thin. It should be noted that by setting Q = 0, we successfully
recovered the results from Ramkissoon et al. [7].

The effect of internal heat generation, Q, on the critical
Rayleigh number of the Newtonian, Maxwell and Jeffrey’s
viscoelastic fluid is now examined for a rigid lower surface in
the presence of surface deflection. Note that when L1 = 0 =
L2, this is the case of a Newtonian fluid layer. When L2 = 0
but L1 is not zero, we are considering a Maxwell viscoelastic
fluid layer, and when both L1 but L2 are non-zero, we are
considering a Jeffreys’ viscoelastic fluid layer.
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Plot of R against a

a

R

Curve #1
Curve #2
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Curve #6
Curve #7

Q=0

Q=0.1

Q=0.2

Q=0.4

Q=0.6

Q=0.8 Q=2.0

Fig. 1. Marginal stability curves for a Newtonian fluid for a rigid lower
surface in the presence of surface deflection and internal heat generation. Set
L1 = L2 = 0, σ = 1, G = 150 and Γ = 1.8 and vary Q
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1
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3.5
Plot of R against a

a

R

Curve #1
Curve #2
Curve #3
Curve #4
Curve #5
Curve #6
Curve #7

Q=0

Q=0.1

Q=0.2

Q=0.4

Q=0.6

Q=1.0

Q=0.8

Fig. 2. Marginal stability curves for a Maxwell fluid for a rigid lower
surface in the presence of surface deflection and internal heat generation. Set
L1 = 0.5, L2 = 0, σ = 1, G = 150 and Γ = 1.8 and vary Q.

From figure 1, Q has a destabilizing effect because as
internal heat generation was introduced into the problem,
(i.e. as Q increased) the critical Rayleigh number decreased.
The critical Rayleigh number in the absence of internal heat
generation when Q = 0 (represented by Curve #1 in Figure
1) is 87.399473. This value continuously decreased from
84.047585 when Q = 0.1 (in Curve #2) to 80.413782 for
Q = 0.2 (in Curve #3) to 72.095834 for Q = 0.4 (in Curve
#4) to 62.561497 for Q = 0.6 (in Curve #5) to 52.794642 for
Q = 0.8 (in Curve #6) and to a much lower value when Q is
increased to 2.0 (in Curve #7). Therefore Q has a destabilizing
effect for the Newtonian fluid.

Next, the effect of Q on a Maxwell viscoelastic fluid layer
is examined. From figure 2, we see that Q had a destabilizing
effect on the Maxwell fluid because as internal heat generation
is introduced into the problem, (i.e. as Q increased) the critical
Rayleigh number decreases. The critical Rayleigh number
in the absence of internal heat generation when Q = 0
(represented by Curve #1 in figure 1) is 3.095966. This value
continuously decreases from 2.706709 when Q = 0.1 (in
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Fig. 3. Marginal stability curves for a Jeffrey’s viscoelastic fluid for a rigid
lower surface in the presence of surface deflection and internal heat generation.
Set L1 = 0.2, L2 = 0.02 σ = 1, G = 150 and Γ = 1.8 and vary Q.
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Fig. 4. Marginal stability curves for a Maxwell fluid for a rigid lower surface
in the presence of surface deflection and absence of internal heat generation
for various values of L1. Set L2 = 0, σ = 1, G = 150 Q = 0 and Γ = 1.8
and vary L1.

Curve #2) to 2.397482 for Q = 0.2 (in Curve #3) to 1.938646
for Q = 0.4 (in Curve #4) to 1.621464 for Q = 0.6 (in Curve
#5) to 1.390132 for Q = 0.8 (in Curve #6) and even lower to
1.215720 when Q = 1.0 (in Curve #7).

We now examine the effect of Q on the Jeffreys’ viscoelastic
fluid. From figure 3, Q also has a destabilizing effect for the
Jeffrey’s viscoelastic fluid because as internal heat generation
is introduced into the problem, (i.e. as Q increased) the critical
Rayleigh number decreases. The critical Rayleigh number
in the absence of internal heat generation when Q = 0
(represented by Curve #1 in figure 1) is 15.941500. This
value continuously decreased from 14.601399 when Q = 0.1
(in Curve #2) to 13.416766 for Q = 0.2 (in Curve #3) to
11.431372 for Q = 0.4 (in Curve #4) to 9.839724 for Q = 0.6
(in Curve #5) to 8.527079 for Q = 0.8 (in Curve #6) and even
lower to 7.408198 when Q = 1.0 (in Curve #7).

Next, the effect of varying L1 of a Maxwell fluid in the
absence and presence of internal heat generation is examined.
From figure 4, L1 has a destabilizing effect on the Maxwell
fluid in the absence of internal heat generation because as L1
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0

5

10

15

20

25

30

35
Plot of R against a

a

R

Curve #1
Curve #2
Curve #3
Curve #4
Curve #5
Curve #6
Curve #7 L1=0.2

L1=0.3

L1=0.4

L1=0.5

L1=0.8
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Fig. 5. Marginal stability curves for a Maxwell fluid for a rigid lower surface
in the presence of surface deflection and internal heat generation for various
values of L1. Set L2 = 0, σ = 1, G = 150 Q = 0.2 and Γ = 1.8 and vary
L1.

increases the critical Rayleigh number decreases for Q = 0.
The critical Rayleigh number when L1 = 0.2 is 16.153435 and
this value continuously decreases to 10.789833 when L1 = 0.3
(in Curve #2) to 7.899738 for L1 = 0.4 (in Curve #3) to
6.143143 for L1 = 0.5 (in Curve #4) to 4.983025 for L1 = 0.6
(in Curve #5) to 4.166746 for L1 = 0.7 (in Curve #6) and even
lower to 3.565803 when L1 = 0.8 (in Curve #7).

The effect of L1 on the Maxwell fluid in the presence of
internal heat generation is now examined. From figure 5, L1
also has a destabilizing effect on the Maxwell fluid in the
presence of internal heat generation because as L1 increased
the critical Rayleigh number decreases for Q = 0.2. The
critical Rayleigh number when L1 = 0.2 is 19.215832 and this
value continuously decreases to 13.121989 when L1 = 0.3 (in
Curve #2) to 9.677033 for L1 = 0.4 (in Curve #3) to 7.553862
for L1 = 0.5 (in Curve #4) to 6.142501 for L1 = 0.6 (in Curve
#5) to 5.147448 for L1 = 0.7 (in Curve #6) and even lower
to 4.412003 when L1 = 0.8 (in Curve #7). Therefore the non-
dimensional relaxation time, L1, has a destabilizing effect on
the Maxwell fluid both in the absence and presence of internal
heat generation.

Next, the effect of varying L1 and L2 of a Jeffreys’
viscoelastic fluid in the absence and presence of internal heat
is examined. We see from figure 6 that L1 has a destabilizing
effect on the Jeffreys’ viscoelastic fluid in the absence of
internal heat generation because as L1 increases the critical
Rayleigh number decreases for Q = 0. The critical Rayleigh
number when L1 = 0.2 is 15.941499 and this value contin-
uously decreases to 13.063460 when L1 = 0.25 (in Curve
#2) to 11.157836 for L1 = 0.3 (in Curve #3) to 9.794140 for
L1 = 0.35 (in Curve #4) and even lower to 8.765256 when
L1 = 0.4 (in Curve #5). Therefore L1 has a destabilizing effect
on the Jeffrey’s viscoelastic fluid in the absence of internal heat
generation.

From figure 7, L1 has a destabilizing effect on the Jeffrey’s
viscoelastic fluid in the presence of internal heat generation
because as L1 increases the critical Rayleigh number decreases
when Q = 0.6. The critical Rayleigh number when L1 = 0.2
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Fig. 6. Marginal stability curves for a Jeffreys’ viscoelastic fluid for a rigid
lower surface in the presence of surface deflection and absence of internal heat
for various values of L1. Set L2 = 0.02, σ = 1, G = 150 Q = 0 and Γ =
1.8 and vary L1.
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Fig. 7. Marginal stability curves for oscillations in a Jeffreys’ viscoelastic
fluid for a rigid lower surface in the presence of surface deflection and internal
heat, Q = 0.6, for various values of L1. Set L2 = 0.02, σ = 1, G =
150 Q = 0.6 and Γ = 1.8 and vary L1.

(in Curve #1) was 9.839724 and this value continuously
decreases to 8.009679 when L1 = 0.25 (in Curve #2) to
6.811227 for L1 = 0.3 (in Curve #3) to 5.962055 for L1 =
0.35 (in Curve #4) and even lower to 5.326499 when L1 = 0.4
(in Curve #5). Therefore the non dimensional relaxation time,
L1, is destabilizing for the Jeffrey’s viscoelastic fluid both in
the absence and presence of internal heat generation.

The stabilizing effect of varying L2 for a Jeffrey’s vis-
coelastic fluid in the absence of internal heat generation was
examined by Ramkissoon et al. [7]. We now study the effect
of varying L2 of a Jeffrey’s viscoelastic fluid in the presence
of internal heat generation.

From figure 8, L2 also had a stabilizing effect on the
Jeffreys’ viscoelastic fluid in the presence of internal heat gen-
eration because as L2 increases the critical Rayleigh number
increases for Q = 0.6. The critical Rayleigh number when
L2 = 0.03 was 9.839724 and this value continuously increases
to 12.376017 when L2 = 0.04 (in Curve #2) to 14.856154 for
L2 = 0.05 (in Curve #3) and even higher to 17.313016 when

4.5 5 5.5 6 6.5 7 7.5 8 8.5
9

10

11

12

13

14

15

16

17

18
Plot of R against a

a

R

Curve #1
Curve #2
Curve #3
Curve #4

L2=0.06

L2=0.04

L2=0.03

L2=0.05

Fig. 8. Marginal stability curves for a Jeffreys’ viscoelastic fluid for a rigid
lower surface in the presence of surface deflection and internal heat generation,
Q = 0.6, for various values of L2. Set L1 = 0.02, σ = 1, G = 150 Q =
0.6 and Γ = 1.8 and vary L2.
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Fig. 9. Marginal stability curves for a Maxwell fluid with a rigid lower surface
in the presence of surface deflection and absence of internal heat generation for
various values of Bi. Set L1 = 0.3, σ = 1, G = 150 Q = 0 and Γ = 1.8
and vary Bi.

L2 = 0.06 (in Curve #4). Therefore L2 has a stabilizing effect
on the Jeffrey’s viscoelastic fluid in the presence of internal
heat generation. Therefore, the non-dimensional retardation
time, L2, is stabilizing for the Jeffrey’s viscoelastic fluid both
in the absence and presence of internal heat generation.

Finally, the effect of the biot number, Bi, on the Maxwell
and Jeffrey’s viscoelastic fluid is examined both in the absence
and presence of internal heat generation. From figure 9, Bi

has a stabilizing effect on the Maxwell fluid in the absence
of internal heat generation because as Bi is increased the
critical Rayleigh number increases for Q = 0. The critical
Rayleigh number when Bi = 0 is 10.789833 and this value
continuously increases to 11.242480 when Bi = 0.2 (in Curve
#2) to 11.926157 for Bi = 0.5 (in Curve #3) to 13.073684 for
Bi = 1 (in Curve #4) to 15.378891 for Bi = 2 (in Curve #5)
and even higher to 22.169618 when Bi = 5 (in Curve #6).
Therefore Bi has a stabilizing effect on the Maxwell fluid in
the absence of internal heat generation.

From figure 10, Bi has a stabilizing effect on the Maxwell
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Fig. 10. Marginal stability curves for a Maxwell fluid with a rigid lower
surface in the presence of surface deflection and presence of internal heat
generation for various values of Bi. Set L1 = 0.3, σ = 1, G = 150 Q =
0.2 and Γ = 1.8 and vary Bi.
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Fig. 11. Marginal stability curves for a Jeffreys’ viscoelastic fluid with a rigid
lower surface in the presence of surface deflection and absence of internal heat
generation for various values of Bi. Set L1 = 0.2, L2 = 0.02, σ = 1, G =
150 Q = 0 and Γ = 1.8 and vary Bi.

fluid in the presence of internal heat generation because as Bi

is increased, the critical Rayleigh number increases for Q =
0.2. The critical Rayleigh number when Bi = 0 is 13.121989
and this value continuously increases to 13.736120 when Bi =
0.2 (in Curve #2) to 14.665542 for Bi = 0.5 (in Curve #3) to
16.230288 for Bi = 1 (in Curve #4) to 19.389672 for Bi = 2
(in Curve #5) and even higher to 28.818018 when Bi = 5 (in
Curve #6). Therefore, the biot number, Bi, is stabilizing for
the Maxwell fluid both in the absence and presence of internal
heat generation.

We see from figure 9 that Bi has a stabilizing effect on
the Jeffrey’s viscoelastic fluid in the absence of internal heat
generation because as Bi is increased, the critical Rayleigh
number increases for Q = 0. The critical Rayleigh number
when Bi = 0 is 22.670500 and this value continuously
increases to 23.570304 when Bi = 0.2 (in Curve #2) to
24.933907 for Bi = 0.5 (in Curve #3) to 27.236250 for
Bi = 1 (in Curve #4) and even higher to 36.656678 for
Bi = 3 (in Curve #5). Therefore Bi has a stabilizing effect on
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Fig. 12. Marginal stability curves for a Jeffreys’ viscoelastic fluid for a rigid
lower surface in the presence of surface deflection and presence of internal
heat generation for various values of Bi. Set L1 = 0.2, L2 = 0.02, σ =
1, G = 150 Q = 0.6 and Γ = 1.8 and vary Bi.

the Jeffreys’ viscoelastic fluid in the absence of internal heat
generation.

Figure 12 illustrates that Bi has a stabilizing effect on a
Jeffreys’ viscoelastic fluid layer in the presence of internal heat
generation, because as Bi is increased, the critical Rayleigh
number increases for Q = 0.6. The critical Rayleigh number
when Bi = 0 is 9.839724 and this value continuously
increases to 10.059360 when Bi = 0.2 (in Curve #2) to
10.386719 forBi = 0.5 (in Curve #3) to 10.927610 forBi = 1
(in Curve #4) and even higher to 13.029142 when Bi = 3 (in
Curve #5). Therefore, the biot number,Bi, is stabilizing for the
Jeffreys’ viscoelastic fluid both in the absence and presence
of internal heat generation.

IV. CONCLUSION

For the Bénard-Marangoni problem investigating the onset
of overstability in a viscoelastic Jeffrey’s fluid layer subjected
to internal heat generation, the presence of internal heat
generation, Q, has a destabilizing effect for the Newtonian,
Maxwell and Jeffrey’s viscoelastic fluid which is enhanced
as Q is increased. The non-dimensional relaxation time, L1,
has a destabilizing effect on both the Maxwell and Jeffrey’s
viscoelastic fluid both in the absence and presence of internal
heat generation. The non-dimensional retardation time, L2,
is stabilizing for the Jeffrey’s viscoelastic fluid both in the
absence and presence of internal heat generation. Also, the
biot number, Bi, is stabilizing for the Maxwell and Jeffrey’s
viscoelastic fluid both in the absence and presence of internal
heat generation.
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