Search results for: Delta wing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 236

Search results for: Delta wing

236 Numerical Investigation of High Attack Angle Flow on 760/450 Double-Delta Wing in Incompressible Flow

Authors: Hesamodin Ebnodin Hamidi, Mojtaba Rahimi

Abstract:

Along with increasing development of generation of supersonic planes especially fighters and request for increasing the performance and maneuverability scientists and engineers suggested the delta and double delta wing design. One of the areas which was necessary to be researched, was the Aerodynamic review of this type of wings in high angles of attack at low speeds that was very important in landing and takeoff the planes and maneuvers. Leading Edges of the wings,cause the separation flow from wing surface and then formation of powerful vortex with high rotational speed which studing the mechanism and location of formation and also the position of the vortex breakdown in high angles of attack is very important. In this research, a double delta wing with 76o/45o sweep angles at high angle of attack in steady state and incompressible flow were numerically analyzed with Fluent software. With analaysis of the numerical results, we arrived the most important characteristic of the double delta wings which is keeping of lift at high angles of attacks.

Keywords: Double delta wing, high angle of attack, vortex breakdown, incompressible flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2572
235 Numerical Investigation of a Slender Delta Wing in Combined Force-Pitch and Free-Roll

Authors: Yang Xiaoliang, Liu Wei, Wang Hongbo, Zhao Yunfei

Abstract:

Numerical investigation of the characteristics of an 80° delta wing in combined force-pitch and free-roll is presented. The implicit, upwind, flux-difference splitting, finite volume scheme and the second-order-accurate finite difference scheme are employed to solve the flow governing equations and Euler rigid-body dynamics equations, respectively. The characteristics of the delta wing in combined free-roll and large amplitude force-pitch is obtained numerically and shows a well agreement with experimental data qualitatively. The motion in combined force-pitch and free-roll significantly reduces the lift force and transverse stabilities of the delta wing, which is closely related to the flying safety. Investigations on sensitive factors indicate that the roll-axis moment of inertia and the structural damping have great influence on the frequency and amplitude, respectively. Moreover, the turbulence model is considered as an influencing factor in the investigation.

Keywords: combined force-pitch and free-roll, numericalsimulation, sensitive factors, slender delta wing, wing rock

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
234 Influence of Vortex Generator on Flow Behavior of Air Stream

Authors: Chakkapong Supasri, Tanongkiat Kiatsiriroat, Atipoang Nuntaphan

Abstract:

 

This research studied the influence of delta wing and delta winglet vortex generators on air flow characteristic. Normally, the vortex generator has been used for enhancing the heat transfer performance by promote the helical flow of air stream. The vortex generator was setup in the wind tunnel and the flow pattern of air stream passing the vortex generator was observed by using smoke generator. The Reynolds number of air stream was between 30,000 and 80,000. It is found that the delta winglet having 20mm fin height and 30 degree of air stream contact angle generates the maximum helical flow of air stream.

Keywords: Vortex generator, Flow behavior, Visual study, Delta wing, Delta winglet, Smoke generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2225
233 Eigenvalues of Particle Bound in Single and Double Delta Function Potentials through Numerical Analysis

Authors: Edward Aris D. Fajardo, Hamdi Muhyuddin D. Barra

Abstract:

This study employs the use of the fourth order Numerov scheme to determine the eigenstates and eigenvalues of particles, electrons in particular, in single and double delta function potentials. For the single delta potential, it is found that the eigenstates could only be attained by using specific potential depths. The depth of the delta potential well has a value that varies depending on the delta strength. These depths are used for each well on the double delta function potential and the eigenvalues are determined. There are two bound states found in the computation, one with a symmetric eigenstate and another one which is antisymmetric.

Keywords: Double Delta Potential, Eigenstates, Eigenvalue, Numerov Method, Single Delta Potential

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3062
232 Oblique Wing: Future Generation Transonic Aircraft

Authors: Mushfiqul Alam, Kashyapa Narenathreyas

Abstract:

The demand for efficient transonic transport has been growing every day and may turn out to be the most pressed innovation in coming years. Oblique wing configuration was proposed as an alternative to conventional wing configuration for supersonic and transonic passenger aircraft due to its aerodynamic advantages. This paper re-demonstrates the aerodynamic advantages of oblique wing configuration using open source CFD code. The aerodynamic data were generated using Panel Method. Results show that Oblique Wing concept with elliptical wing planform offers a significant reduction in drag at transonic and supersonic speeds and approximately twice the lift distribution compared to conventional operating aircrafts. The paper also presents a preliminary conceptual aircraft sizing which can be used for further experimental analysis.

Keywords: Aerodynamics, asymmetric sweep, oblique wing, swing wing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368
231 Analysis and Flight Test for Small Inflatable Wing Design

Authors: Zhang Jun-Tao, Hou Zhong-xi, Guo Zheng, Chen Li-li

Abstract:

This article discusses stress analysis and the shape characteristics of the inflatable wing, and then introduces the design method of inflatable wing, in order to accurately approximate a standard airfoil. It specifically analyses the aerodynamic characteristics of the inflatable wing with the method of CFD, along with comparing to standard airfoil, afterwards we carries out the manufacture of inflatable wing and the flight test.

Keywords: Inflatable wing, Stress analysis, Aerodynamic characteristics, Flight test

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2696
230 Quadratic Irrationals, Quadratic Ideals and Indefinite Quadratic Forms II

Authors: Ahmet Tekcan, Arzu Özkoç

Abstract:

Let D = 1 be a positive non-square integer and let δ = √D or 1+√D 2 be a real quadratic irrational with trace t =δ + δ and norm n = δδ. Let γ = P+δ Q be a quadratic irrational for positive integers P and Q. Given a quadratic irrational γ, there exist a quadratic ideal Iγ = [Q, δ + P] and an indefinite quadratic form Fγ(x, y) = Q(x−γy)(x−γy) of discriminant Δ = t 2−4n. In the first section, we give some preliminaries form binary quadratic forms, quadratic irrationals and quadratic ideals. In the second section, we obtain some results on γ, Iγ and Fγ for some specific values of Q and P.

Keywords: Quadratic irrationals, quadratic ideals, indefinite quadratic forms, extended modular group.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250
229 A 3rd order 3bit Sigma-Delta Modulator with Reduced Delay Time of Data Weighted Averaging

Authors: Soon Jai Yi, Sun-Hong Kim, Hang-Geun Jeong, Seong-Ik Cho

Abstract:

This paper presents a method of reducing the feedback delay time of DWA(Data Weighted Averaging) used in sigma-delta modulators. The delay time reduction results from the elimination of the latch at the quantizer output and also from the falling edge operation. The designed sigma-delta modulator improves the timing margin about 16%. The sub-circuits of sigma-delta modulator such as SC(Switched Capacitor) integrator, 9-level quantizer, comparator, and DWA are designed with the non-ideal characteristics taken into account. The sigma-delta modulator has a maximum SNR (Signal to Noise Ratio) of 84 dB or 13 bit resolution.

Keywords: Sigma-delta modulator, multibit, DWA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406
228 Multi-fidelity Fluid-Structure Interaction Analysis of a Membrane Wing

Authors: M. Saeedi, R. Wuchner, K.-U. Bletzinger

Abstract:

In order to study the aerodynamic performance of a semi-flexible membrane wing, Fluid-Structure Interaction simulations have been performed. The fluid problem has been modeled using two different approaches which are the vortex panel method and the numerical solution of the Navier-Stokes equations. Nonlinear analysis of the structural problem is performed using the Finite Element Method. Comparison between the two fluid solvers has been made. Aerodynamic performance of the wing is discussed regarding its lift and drag coefficients and they are compared with those of the equivalent rigid wing.

Keywords: CFD, FSI, Membrane wing, Vortex panel method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
227 Total Chromatic Number of Δ-Claw-Free 3-Degenerated Graphs

Authors: Wongsakorn Charoenpanitseri

Abstract:

The total chromatic number χ"(G) of a graph G is the minimum number of colors needed to color the elements (vertices and edges) of G such that no incident or adjacent pair of elements receive the same color Let G be a graph with maximum degree Δ(G). Considering a total coloring of G and focusing on a vertex with maximum degree. A vertex with maximum degree needs a color and all Δ(G) edges incident to this vertex need more Δ(G) + 1 distinct colors. To color all vertices and all edges of G, it requires at least Δ(G) + 1 colors. That is, χ"(G) is at least Δ(G) + 1. However, no one can find a graph G with the total chromatic number which is greater than Δ(G) + 2. The Total Coloring Conjecture states that for every graph G, χ"(G) is at most Δ(G) + 2. In this paper, we prove that the Total Coloring Conjectur for a Δ-claw-free 3-degenerated graph. That is, we prove that the total chromatic number of every Δ-claw-free 3-degenerated graph is at most Δ(G) + 2.

Keywords: Total colorings, the total chromatic number, 3-degenerated.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 716
226 Layout Design Optimization of Spars under Multiple Load Cases of the High-Aspect-Ratio Wing

Authors: Yu Li, Jingwu He, Yuexi Xiong

Abstract:

The spar layout will affect the wing’s stiffness characteristics, and irrational spar arrangement will reduce the overall bending and twisting resistance capacity of the wing. In this paper, the active structural stiffness design theory is used to match the stiffness-center axis position and load-cases under the corresponding multiple flight conditions, in order to achieve better stiffness properties of the wing. The combination of active stiffness method and principle of stiffness distribution is proved to be reasonable supplying an initial reference for wing designing. The optimized layout of spars is eventually obtained, and the high-aspect-ratio wing will have better stiffness characteristics.

Keywords: Active structural stiffness design theory, high-aspect-ratio wing, flight load cases, layout of spars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1112
225 Oscillation Criteria for Nonlinear Second-order Damped Delay Dynamic Equations on Time Scales

Authors: Da-Xue Chen, Guang-Hui Liu

Abstract:

In this paper, we establish several oscillation criteria for the nonlinear second-order damped delay dynamic equation r(t)|xΔ(t)|β-1xΔ(t)Δ + p(t)|xΔσ(t)|β-1xΔσ(t) + q(t)f(x(τ (t))) = 0 on an arbitrary time scale T, where β > 0 is a constant. Our results generalize and improve some known results in which β > 0 is a quotient of odd positive integers. Some examples are given to illustrate our main results.

Keywords: Oscillation, damped delay dynamic equation, time scale.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277
224 Drag Analysis of an Aircraft Wing Model withand without Bird Feather like Winglet

Authors: Altab Hossain, Ataur Rahman, A.K.M. P. Iqbal, M. Ariffin, M. Mazian

Abstract:

This work describes the aerodynamic characteristic for aircraft wing model with and without bird feather like winglet. The aerofoil used to construct the whole structure is NACA 653-218 Rectangular wing and this aerofoil has been used to compare the result with previous research using winglet. The model of the rectangular wing with bird feather like winglet has been fabricated using polystyrene before design using CATIA P3 V5R13 software and finally fabricated in wood. The experimental analysis for the aerodynamic characteristic for rectangular wing without winglet, wing with horizontal winglet and wing with 60 degree inclination winglet for Reynolds number 1.66×105, 2.08×105 and 2.50×105 have been carried out in open loop low speed wind tunnel at the Aerodynamics laboratory in Universiti Putra Malaysia. The experimental result shows 25-30 % reduction in drag coefficient and 10-20 % increase in lift coefficient by using bird feather like winglet for angle of attack of 8 degree.

Keywords: Aerofoil, Wind tunnel, Winglet, Drag Coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6294
223 Sigma-Delta ADCs Converter a Study Case

Authors: Thiago Brito Bezerra, Mauro Lopes de Freitas, Waldir Sabino da Silva Júnior

Abstract:

The Sigma-Delta A/D converters have been proposed as a practical application for A/D conversion at high rates because of its simplicity and robustness to imperfections in the circuit, also because the traditional converters are more difficult to implement in VLSI technology. These difficulties with conventional conversion methods need precise analog components in their filters and conversion circuits, and are more vulnerable to noise and interference. This paper aims to analyze the architecture, function and application of Analog-Digital converters (A/D) Sigma-Delta to overcome these difficulties, showing some simulations using the Simulink software and Multisim.

Keywords: Analysis, Oversampling Modulator, A/D converters, Sigma-Delta.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2686
222 Dense Chaos in Coupled Map Lattices

Authors: Tianxiu Lu, Peiyong Zhu

Abstract:

This paper is mainly concerned with a kind of coupled map lattices (CMLs). New definitions of dense δ-chaos and dense chaos (which is a special case of dense δ-chaos with δ = 0) in discrete spatiotemporal systems are given and sufficient conditions for these systems to be densely chaotic or densely δ-chaotic are derived.

Keywords: Discrete spatiotemporal systems, coupled map lattices, dense δ-chaos, Li-Yorke pairs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
221 Computational Analysis of Cavity Effect over Aircraft Wing

Authors: P. Booma Devi, Dilip A. Shah

Abstract:

This paper seeks the potentials of studying aerodynamic characteristics of inward cavities called dimples, as an alternative to the classical vortex generators. Increasing stalling angle is a greater challenge in wing design. But our examination is primarily focused on increasing lift. In this paper, enhancement of lift is mainly done by introduction of dimple or cavity in a wing. In general, aircraft performance can be enhanced by increasing aerodynamic efficiency that is lift to drag ratio of an aircraft wing. Efficiency improvement can be achieved by improving the maximum lift co-efficient or by reducing the drag co-efficient. At the time of landing aircraft, high angle of attack may lead to stalling of aircraft. To avoid this kind of situation, increase in the stalling angle is warranted. Hence, improved stalling characteristic is the best way to ease landing complexity. Computational analysis is done for the wing segment made of NACA 0012. Simulation is carried out for 30 m/s free stream velocity over plain airfoil and different types of cavities. The wing is modeled in CATIA V5R20 and analyses are carried out using ANSYS CFX. Triangle and square shapes are used as cavities for analysis. Simulations revealed that cavity placed on wing segment shows an increase of maximum lift co-efficient when compared to normal wing configuration. Flow separation is delayed at downstream of the wing by the presence of cavities up to a particular angle of attack.

Keywords: Lift, square and rectangle dimples, enhancement of stall angle, cavity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
220 Distributed 2-Vertex Connectivity Test of Graphs Using Local Knowledge

Authors: Brahim Hamid, Bertrand Le Saec, Mohamed Mosbah

Abstract:

The vertex connectivity of a graph is the smallest number of vertices whose deletion separates the graph or makes it trivial. This work is devoted to the problem of vertex connectivity test of graphs in a distributed environment based on a general and a constructive approach. The contribution of this paper is threefold. First, using a preconstructed spanning tree of the considered graph, we present a protocol to test whether a given graph is 2-connected using only local knowledge. Second, we present an encoding of this protocol using graph relabeling systems. The last contribution is the implementation of this protocol in the message passing model. For a given graph G, where M is the number of its edges, N the number of its nodes and Δ is its degree, our algorithms need the following requirements: The first one uses O(Δ×N2) steps and O(Δ×logΔ) bits per node. The second one uses O(Δ×N2) messages, O(N2) time and O(Δ × logΔ) bits per node. Furthermore, the studied network is semi-anonymous: Only the root of the pre-constructed spanning tree needs to be identified.

Keywords: Distributed computing, fault-tolerance, graph relabeling systems, local computations, local knowledge, message passing system, networks, vertex connectivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
219 Modeling of a Second Order Non-Ideal Sigma-Delta Modulator

Authors: Abdelghani Dendouga, Nour-Eddine Bouguechal, Souhil Kouda, Samir Barra

Abstract:

A behavioral model of a second order switchedcapacitor Sigma-Delta modulator is presented. The purpose of this work is the presentation of a behavioral model of a second order switched capacitor ΣΔ modulator considering (Error due to Clock Jitter, Thermal noise Amplifier Noise, Amplifier Slew-Rate, Non linearity of amplifiers, Gain error, Charge Injection, Clock Feedthrough, and Nonlinear on-resistance). A comparison between the use of MOS switches and the use transmission gate switches use is analyzed.

Keywords: Charge injection, clock feed through, Sigma Deltamodulators, Sigma Delta non-idealities, switched capacitor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3018
218 Structural Analysis of an Active Morphing Wing for Enhancing UAV Performance

Authors: E. Kaygan, A. Gatto

Abstract:

A numerical study of a design concept for actively controlling wing twist is described in this paper. The concept consists of morphing elements which were designed to provide a rigid and seamless skin while maintaining structural rigidity. The wing structure is first modeled in CATIA V5 then imported into ANSYS for structural analysis. Athena Vortex Lattice method (AVL) is used to estimate aerodynamic response as well as aerodynamic loads of morphing wings, afterwards a structural optimization performed via ANSYS Static. Overall, the results presented in this paper show that the concept provides efficient wing twist while preserving an aerodynamically smooth and compliant surface. Sufficient structural rigidity in bending is also obtained. This concept is suggested as a possible alternative for morphing skin applications. 

Keywords: Aircraft, morphing, skin, twist.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
217 A Continuous Time Sigma Delta Modulators Using CMOS Current Conveyors

Authors: E. Farshidi, N. Ahmadpoor

Abstract:

In this paper, a alternative structure method for continuous time sigma delta modulator is presented. In this modulator for implementation of integrators in loop filter second generation current conveyors are employed. The modulator is designed in CMOS technology and features low power consumption (<2.8mW), low supply voltage (±1.65), wide dynamic range (>65db), and with 180khZ bandwidth. Simulation results confirm that this design is suitable for data converters.

Keywords: Current Conveyor, continuous, sigma delta, MOS, modulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
216 The Excess Loop Delay Calibration in a Bandpass Continuous-Time Delta Sigma Modulators Based on Q-Enhanced LC Filter

Authors: Sorore Benabid

Abstract:

The Q-enhanced LC filters are the most used architecture in the Bandpass (BP) Continuous-Time (CT) Delta-Sigma (ΣΔ) modulators, due to their: high frequencies operation, high linearity than the active filters and a high quality factor obtained by Q-enhanced technique. This technique consists of the use of a negative resistance that compensate the ohmic losses in the on-chip inductor. However, this technique introduces a zero in the filter transfer function which will affect the modulator performances in term of Dynamic Range (DR), stability and in-band noise (Signal-to-Noise Ratio (SNR)). In this paper, we study the effect of this zero and we demonstrate that a calibration of the excess loop delay (ELD) is required to ensure the best performances of the modulator. System level simulations are done for a 2ndorder BP CT (ΣΔ) modulator at a center frequency of 300MHz. Simulation results indicate that the optimal ELD should be reduced by 13% to achieve the maximum SNR and DR compared to the ideal LC-based ΣΔ modulator.

Keywords: Continuous-time bandpass delta-sigma modulators, excess loop delay, on-chip inductor, Q-enhanced LC filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760
215 Digital Control Algorithm Based on Delta-Operator for High-Frequency DC-DC Switching Converters

Authors: Renkai Wang, Tingcun Wei

Abstract:

In this paper, a digital control algorithm based on delta-operator is presented for high-frequency digitally-controlled DC-DC switching converters. The stability and the controlling accuracy of the DC-DC switching converters are improved by using the digital control algorithm based on delta-operator without increasing the hardware circuit scale. The design method of voltage compensator in delta-domain using PID (Proportion-Integration- Differentiation) control is given in this paper, and the simulation results based on Simulink platform are provided, which have verified the theoretical analysis results very well. It can be concluded that, the presented control algorithm based on delta-operator has better stability and controlling accuracy, and easier hardware implementation than the existed control algorithms based on z-operator, therefore it can be used for the voltage compensator design in high-frequency digitally- controlled DC-DC switching converters.

Keywords: Digitally-controlled DC-DC switching converter, finite word length, control algorithm based on delta-operator, high-frequency, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1262
214 Evaluation of Heavy Metal Concentrations of Stem and Seed of Juncus acutus for Grazing Animals and Birds in Kızılırmak Delta

Authors: N. Cetinkaya, F. Erdem

Abstract:

Juncus acutus (Juncaceae) is a perennial wetland plant and it is commonly known as spiny rush or sharp rush. It is the most abundant plant in Kizilirmak grassland, Samsun, Turkey. Heavy metals are significant environmental contaminants in delta and their toxicity is an increasing problem for animals whose natural habitat is delta. The objective of this study was to evaluate heavy metal concentrations mainly As, Cd, Sb, Ba, Pb and Hg in stem and seed of Juncus acutus for grazing animals and birds in delta. The Juncus acutus stem and seed samples were collected from Kizilirmak Delta in July, August and September. Heavy metal concentrations of collected samples were analyzed by Inductively Coupled Plasma – Mass Spectrometer (ICP-MS). The obtained mean values of three months for As, Cd, Sb, Ba, Pb and Hg of stem and seed samples of Juncus acutus were 0.11 and 0.23 mg/kg; 0.07 and 0.11 mg/kg; 0.02 and 0.02 mg/kg; 5.26 and 1.75 mg/kg; 0.05 and not detectable in July respectively. Hg was not detected in both stem and seed of Juncus acutus, Pb concentration was determined only in stem of Juncus acutus but not in seed. There were no significant differences between the values of three months for As, Cd, Sb, Ba, Pb and Hg of stem and seed samples of Juncus acutus. The obtained As, Cd, Sb, Ba, Pb and Hg results of stem and seed of Juncus acutus show that seed and stem of Juncus acutus may be safely consumed for grazing animals and birds regarding to heavy metals contamination in Kizilirmak Delta.

Keywords: Heavy metals, Juncus acutus, Kizilirmak Delta, wetland.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 721
213 Studies on Race Car Aerodynamics at Wing in Ground Effect

Authors: Dharni Vasudhevan Venkatesan, Shanjay K E, Sujith Kumar H, Abhilash N A, Aswin Ram D, V.R.Sanal Kumar

Abstract:

Numerical studies on race car aerodynamics at wing in ground effect have been carried out using a steady 3d, double precision, pressure-based, and standard k-epsilon turbulence model. Through various parametric analytical studies we have observed that at a particular speed and ground clearance of the wings a favorable negative lift was found high at a particular angle of attack for all the physical models considered in this paper. The fact is that if the ground clearance height to chord length (h/c) is too small, the developing boundary layers from either side (the ground and the lower surface of the wing) can interact, leading to an altered variation of the aerodynamic characteristics at wing in ground effect. Therefore a suitable ground clearance must be predicted throughout the racing for a better performance of the race car, which obviously depends upon the coupled effects of the topography, wing orientation with respect to the ground, the incoming flow features and/or the race car speed. We have concluded that for the design of high performance and high speed race cars the adjustable wings capable to alter the ground clearance and the angles of attack is the best design option for any race car for racing safely with variable speeds.

Keywords: External aerodynamics, External Flow Choking, Race car aerodynamics, Wing in Ground Effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5798
212 The Study of Stable Isotopes (18O, 2H & 13C) in Kardeh River and Dam Reservoir, North-Eastern Iran

Authors: Hossein Mohammadzadeh, Mojtaba Heydarizad

Abstract:

Among various water resources, the surface water has a dominant role in providing water supply in the arid and semi-arid region of Iran. Andarokh-Kardeh basin is located in 50 km from Mashhad city - the second biggest city of Iran (NE of Iran), draining by Kardeh river which provides a significant portion of potable and irrigation water needs for Mashhad. The stable isotopes (18O, 2H,13C-DIC, and 13C-DOC), as reliable and precious water fingerprints, have been measured in Kardeh river (Kharket, Mareshk, Jong, All and Kardeh stations) and in Kardeh dam reservoirs (at five different sites S1 to S5) during March to June 2011 and June 2012. On δ18O vs. δ2H diagram, the river samples were plotted between Global and Eastern Mediterranean Meteoric Water lines (GMWL and EMMWL) which demonstrate that various moisture sources are providing humidity for precipitation events in this area. The enriched δ18O and δ2H values (-6.5 ‰ and -44.5 ‰ VSMOW) of Kardeh dam reservoir are compared to Kardeh river (-8.6‰and-54.4‰), and its deviation from Mashhad meteoric water line (MMWL- δ2H=7.16δ18O+11.22) is due to evaporation from the open surface water body. The enriched value of δ 13C-DIC and high amount of DIC values (-7.9 ‰ VPDB and 57.23 ppm) in the river and Kardeh dam reservoir (-7.3 ‰ VPDB and 55.53 ppm) is due to dissolution of Mozdooran Carbonate Formation lithology (Jm1 to Jm3 units) (contains enriched δ13C DIC values of 9.2‰ to 27.7‰ VPDB) in the region. Because of the domination of C3 vegetations in Andarokh_Kardeh basin, the δ13C-DOC isotope of the river (-28.4‰ VPDB) and dam reservoir (-32.3‰ VPDB) demonstrate depleted values. Higher DOC concentration in dam reservoir (2.57 ppm) compared to the river (0.72 ppm) is due to more biologogical activities and organic matters in dam reservoir.

Keywords: Dam reservoir, Iran, Kardeh river, Khorasan razavi, Stable isotopes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1021
211 The Effect of Canard Configurations to the Aerodynamics of the Blended Wing Body

Authors: Zurriati Mohd Ali, Wahyu Kuntjoro, Wirachman Wisnoe

Abstract:

The aerodynamics characteristics of a blended-wing body (BWB) aircraft were obtained in Universiti Teknologi MARA low speed wind tunnel. The scaled-down of BWB model consisted of a canard as its horizontal stabilizer. There were four canards with different aspect ratio used in the experiments. Canard setting angles were varied from -20q to 20q. All tests were conducted at velocity of 35 m/s, with Mach number 0.1. At low angles of attacks, the increment of lift slope for various canards aspect ratio is small and almost constant. Higher canard aspect ratio will cause higher drag. However, canard has a high effect to the moment at zero lift, CM,0.The visualization using mini tuff was performed to observe the airflow at the upper surface of canard. KeywordsAerodynamics,blended-wing body, canard, wind tunnel.

Keywords: Aerodynamics, blended-wing body, canard, wind tunnel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5520
210 Numerical Study of Flapping-Wing Flight of Hummingbird Hawkmoth during Hovering: Longitudinal Dynamics

Authors: Yao Jie, Yeo Khoon Seng

Abstract:

In recent decades, flapping wing aerodynamics has attracted great interest. Understanding the physics of biological flyers such as birds and insects can help improve the performance of micro air vehicles. The present research focuses on the aerodynamics of insect-like flapping wing flight with the approach of numerical computation. Insect model of hawkmoth is adopted in the numerical study with rigid wing assumption currently. The numerical model integrates the computational fluid dynamics of the flow and active control of wing kinematics to achieve stable flight. The computation grid is a hybrid consisting of background Cartesian nodes and clouds of mesh-free grids around immersed boundaries. The generalized finite difference method is used in conjunction with single value decomposition (SVD-GFD) in computational fluid dynamics solver to study the dynamics of a free hovering hummingbird hawkmoth. The longitudinal dynamics of the hovering flight is governed by three control parameters, i.e., wing plane angle, mean positional angle and wing beating frequency. In present work, a PID controller works out the appropriate control parameters with the insect motion as input. The controller is adjusted to acquire desired maneuvering of the insect flight. The numerical scheme in present study is proven to be accurate and stable to simulate the flight of the hummingbird hawkmoth, which has relatively high Reynolds number. The PID controller is responsive to provide feedback to the wing kinematics during the hovering flight. The simulated hovering flight agrees well with the real insect flight. The present numerical study offers a promising route to investigate the free flight aerodynamics of insects, which could overcome some of the limitations of experiments.

Keywords: Aerodynamics, flight control, computational fluid dynamics, flapping-wing flight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
209 Structural Analysis of Aircraft Wing Using Finite Element Analysis

Authors: Manish Kumar, Pradeep Rout Aditya Kumar Jha, Pankaj Gupta

Abstract:

Wings are structural components of an aeroplane that are used to produce lift while the aircraft is in flight. The initial assault angle of the wing is definite. Due to the pressure difference at the top and bottom surfaces of the wing, lift force is produced when the flow passes over it. This paper explains the fundamental concept of the structural behaviour of a wing threatened by flowing loads during the voyage. The study comprises the use of concepts and analysis with the help of finite element analysis. Wing assembly is the first stage of wing model and design, which are determined by fascinating factual features. The basic gathering wing consists of a thin membrane, two poles, and several ribs. It has two spars, the major spar and the secondary spar. Here, NACA 23015 is selected as the standard model for all types of aerofoil structures since it is more akin to the custom aerofoil utilized in large aircraft, specifically the Airbus A320. Two rods mostly endure the twisting moment and trim strength, which is finished with titanium contamination to ensure enough inflexibility. The covering and wing spars are made of aluminium amalgam to lessen the structural heaviness. Following that, a static underlying examination is performed, and the general contortion, equivalent flexible strain, and comparing Von-Mises pressure are obtained to aid in investigations of the mechanical behaviour of the wing. Moreover, the modular examination is being upheld to decide the normal pace of repetition as well as the modular state of the three orders, which are obtained through the pre-stress modular investigation. The findings of the modular investigation assist engineers in reducing their excitement about regular events and turning away the wing from the whirlwind. Based on the findings of the study, planners can prioritise union and examination of the pressure mindfulness range and tremendous twisting region. All in all, the entertainment outcomes demonstrate that the game plan is feasible and further develop the data grade of the lifting surface.

Keywords: FEM, Airbus, NACA, modulus of elasticity, aircraft wing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 561
208 Vibration Attenuation Using Functionally Graded Material

Authors: Saeed Asiri, Hassan Hedia, Wael Eissa

Abstract:

The aim of the work was to attenuate the vibration amplitude in CESNA 172 airplane wing by using Functionally Graded Material instead of uniform or composite material. Wing strength was achieved by means of stress analysis study, while wing vibration amplitudes and shapes were achieved by means of Modal and Harmonic analysis. Results were verified by applying the methodology in a simple cantilever plate to the simple model and the results were promising and the same methodology can be applied to the airplane wing model. Aluminum models, Titanium models, and functionally graded materials of Aluminum and titanium results were compared to show a great vibration attenuation after using the FGM. Optimization in FGM gradation satisfied our objective of reducing and attenuating the vibration amplitudes to show the effect of using FGM in vibration behavior. Testing the Aluminum rich models, and comparing it with the titanium rich model was an optimization in this paper. Results have shown a significant attenuation in vibration magnitudes when using FGM instead of Titanium Plate, and Aluminium wing with FGM Spurs instead of Aluminium wings. It was also recommended that in future, changing the graphical scale to 1:10 or even 1:1 when the computers- capabilities allow.

Keywords: Vibration, Attenuation, FGM, ANSYS2011, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3134
207 A Current-mode Continuous-time Sigma-delta Modulator based on Translinear Loop Principle

Authors: P. Jelodarian , E. Farshidi

Abstract:

In this paper, a new approach for design of a fully differential second order current mode continuous-time sigma-delta modulator is presented. For circuit implementation, square root domain (SRD) translinear loop based on floating-gate MOS transistors that operate in saturation region is employed. The modulator features, low supply voltage, low power consumption (8mW) and high dynamic range (55dB). Simulation results confirm that this design is suitable for data converters.

Keywords: Sigma-delta, current-mode, translinear loop, geometric mean, squarer/divider.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2372