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Abstract—In order to study the aerodynamic performance of a
semi-flexible membrane wing, Fluid-Structure Interaction simulations
have been performed. The fluid problem has been modeled using
two different approaches which are the vortex panel method and the
numerical solution of the Navier-Stokes equations. Nonlinear analysis
of the structural problem is performed using the Finite Element
Method. Comparison between the two fluid solvers has been made.
Aerodynamic performance of the wing is discussed regarding its
lift and drag coefficients and they are compared with those of the
equivalent rigid wing.

Keywords—CFD, FSI, Membrane wing, Vortex panel method.

I. INTRODUCTION

FLEXIBLE wings have been the topic of many research
programs. Different techniques have been used in order

to bring flexibility to conventional wing configurations. They
range from using new structural concepts for wing frame like
telescopic spars [1] or morphing wing [2] to using smart
materials in manufacturing of the wing [3]. In active control
concepts like morphing wing, deformability is brought to the
wing by the use of actuators, in passive control on the other
hand the wing is to some extend flexible and is deformed
solely as a consequence of applied aerodynamic loads. In the
case of passive control the final form of the wing is a result
of the equilibrium between aerodynamic forces and internal
structural forces and therefore it is not trivial to reach the
desired final form. Membrane wings are also a good alternative
to rigid wing constructions for Micro Air Vehicles (maximum
dimension of 15cm by definition) [4], [5]. The flexibility of a
membrane wing enables it to adapt itself to the flow field to a
certain extend. The advantages of this passive adaption to the
surrounding flow are from aerodynamics point of view a higher
lift slope, higher maximum lift coefficient and postponed stall
to higher angles of attack compared to rigid wings [6] and from
the structural perspective load reduction in unsteady flow cases
[7]. One drawback of flexible wings could be that because of
their flexibility and due to self excited vibrations they could
show unsteady response even to steady flow conditions [8].

A membrane wing concept is studied in the current work.
Membrane structures are able to efficiently carry external
loads over large spans via internal in-plane stresses. The
response of such a wing to aerodynamic loads depends on
the membrane’s stresses, so two-way coupled fluid-structure
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interaction simulations (FSI) are necessary to analyze its
performance. Numerous simulations might be needed to find
the best set of prestresses to ensure a better aerodynamic
performance. It highlights the need for less complex fluid
models for FSI simulations during early design stages. An
alternative to the numerical simulation of the flow field using
Navier-Stokes equations (NSE) is the vortex panel method.
The panel method is computationally less demanding and
enables faster exploration of the design space. However, in
general, it neglects viscous effects and therefore its range
of applicability should be evaluated. In the current paper
FSI simulations for the membrane wing concept have been
performed using the two approaches for the fluid side and
the results are compared. Aerodynamic performance of the
membrane wing is compared with its equivalent rigid wing as
well.

II. MEMBRANE WING CONCEPT AND FSI SIMULATION
STRATEGY

Fig. 1 shows the membrane wing concept studied in the
current work. The sailwing concept was proposed by Ormiston
during the 80s [9]. A rigid mast forms the leading edge section
of the wing. To support the upper and lower membranes, spars
are mounted along the span of the wing and their number
depends on the span length of the wing. Upper and lower
membranes are joined together at the trailing edge via a
pretensioned edge cable.

In case of a flexible membrane wing, the shape of the wing
surface depends on the one hand on the working conditions in
terms of wind speed, angle of attack, etc. and on the other hand
on the structural properties of its supporting frame and the
membranes which form the wing surface. Pressure distribution
on the surface of the wing depends on the form and the
above mentioned working condition. Structural properties of
the wing govern its deformation under such a loading. The
final form of the wing results from this interaction between
loading and displacement. This emphasizes the necessity of
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Fig. 1 Sailwing construction concept, from [9]
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FSI simulations for the analysis of such a wing concept. FSI
simulations are computationally complex and time-consuming.
From the fluid point of view, turbulent flow should be
simulated using either LES or RANS turbulence models and
on the structural side nonlinear dynamic or static analysis is
needed in order to correctly deal with large displacements
which occur in membrane wings. The analysis starts with form
finding simulation. In form finding the equilibrium state of the
wing is calculated, i.e. the state where membrane and edge
cable internal forces are in a balance is computed. This is
typically the initial shape of the wing surface in the absence
of external forces. FSI simulations are started from this initial
state. In the following, fluid, structure and coupling related
aspects are explained.

A. Fluid Model

Two different approaches are used for the modeling of fluid
flow. The first one is the numerical solution of Navier-Stokes
equations using the finite volume method and the second
one is the vortex panel method. The advantage of the vortex
panel method is that it is computationally less demanding,
while its drawback is that it neglects the viscous effects.
Still it is a very good alternative to Navier-Stokes during
the early design stages. While a steady state FSI simulation
using the first approach takes about 15 hours to converge,
the same simulation takes about 20 minutes to converge to
the steady-state solution using vortex panel method. Even
though some details of fluid flow are neglected in vortex
panel method, the fact that it is much faster than solving
Navier-Stokes equations enables design space explorations at
reasonable computational costs in a certain range of operating
conditions

1) Navier-Stokes Equations: The NS equations are the
general equations describing the flow of fluid substances. For
flows with constant viscosity they read:

∇ · (ρv) = 0 (1)

and

ρ(
∂v

∂t
+ v.∇v) = −∇p+ μ∇2v + f . (2)

Velocity (v) and pressure (p) fields are coupled in these
equations. SIMPLE algorithm of Patankar and Spalding [10] is
used to enforce the coupling. Reynolds averaged Navier-Stokes
model is used for turbulence modeling and turbulent viscosity
is modeled using k − ωSST model [11]. It is a two
equation model used to calculate kinematic eddy viscosity.
First the equations for turbulent kinetic energy (k) and specific
dissipation rate (ω) are solved. Kinematic eddy viscosity is
then calculated from k, ω and other parameters of the model.

2) Vortex Panel Method: The velocity field for the case
of irrotational, incompressible and inviscid flow can be
represented by a velocity potential Φ. This is the basis for
vortex panel method. The flow velocity can be calculated from
the potential in the following way:

u = −∂Φ

∂x
, (3)

v = −∂Φ

∂y
, (4)

w = −∂Φ

∂z
. (5)

Inserting the above equations into continuity equation (1)
results in the continuity equation in terms of the potential:

∇2Φ = 0. (6)

This equation can be solved by superposition of elementary
solutions. There are two boundary conditions for solving this
Laplacian equation. One is that at no-slip walls in the domain
(e.g. on wing surface) the velocity component normal to the
surface should vanish:

∇Φ · n = 0, (7)

where n is the vector normal to the surface. The other
condition is that the disturbance in the freestream flow caused
by the elementary solutions should vanish as the distance, r,
from the boundary surface increases:

lim
r→∞∇Φ = 0. (8)

Using the Green’s identity it can be shown that the potential
at each point, P , inside the domain can be calculated in terms
of the potential (Φ) and its derivative (∂Φ∂n ) on the boundary
of the domain:

Φ(P ) =
1

4π

∫
S

(
1

r
∇Φ− Φ∇1

r
) · ndS (9)

Detailed derivation of (9) is available in [12]. The problem
is now reduced to finding the values of the potential on
the boundary which fulfill the continuity equation (6) and
the two boundary conditions stated in (7) and (8). Laplace
equation is a linear equation and if two functions fulfill the
equation, their linear combination fulfills the equation as well.
Hence, the solution of the continuity equation can be found
as a superposition of elementary solutions like sources and
doublets on the boundary of the domain. For a point source
with strength of σ we have:

Φ = − σ

4πr
(10)

and
v(P ) =

σ

4π

r

r3
(11)

where r is the vector from the point source to the point P and
r is its magnitude. For a point doublet with strength of μ the
potential reads:

Φ =
μ

4π
n · ∇(1

r

)
(12)

and the three components of the velocity at a point P =
(x, y, z) due to a point doublet located at (x0, y0, z0) are

u = − μ

4π

(y − y0)
2 + (z − z0)

2 − 2(x− x0)
2

[(x− x0)2 + (y − y0)2 + (z − z0)2]
5
2

, (13)

v =
3μ

4π

(x− x0)(y − y0)

[(x− x0)2 + (y − y0)2 + (z − z0)2]
5
2

, (14)
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and

w =
3μ

4π

(x− x0)(z − z0)

[(x− x0)2 + (y − y0)2 + (z − z0)2]
5
2

. (15)

The elementary solutions automatically satisfy the
constraint that they should decay as the distance increases.
Their resulting velocity vanishes as r tends to infinity. But
the velocity goes to infinity as r tends to 0. That is why they
are called singular solutions. In panel method the strength
of these singular solutions are calculated using the boundary
condition stated in (7) to enforce zero normal velocity at the
surface of the boundary. The surface of the wing is discretized
with a number of panels as shown in Fig. 2. Each panel
on the wing surface represents a quadrilateral source and
a quadrilateral doublet element. In addition to wing panels
there are wake panels to represent the wake behind the wing.
Wake panels consist of quadrilateral doublets.

[12]

There are two ways to enforce the zero normal flow
boundary condition. It can be enforced as a Dirichlet boundary
condition by setting a constant value for the potential inside
the body or as a Neumann boundary condition which deals
with the derivative of the potential, i.e. the velocity. We have
used the latter implementation of this boundary condition for
the collocation point at each panel. The collocation point of
a panel is at the center of the panel (in the case of Dirichlet
boundary condition the collocation points are shifted inside
the body). The velocity at collocation point P is calculated by
summing up the contribution of each panel to the velocity at
this point:

v(P ) =
N∑

k=1

Ckμk +

Nw∑
l=1

Clμl +
N∑

k=1

Bkσk, (16)

where N is the number of panels on wing’s surface and Nw

is the number of wake panels. The first term in (16) is for
the contribution of doublet elements on the wing panel, the
second represents the contribution of doublet element at the
wake and finally the last one is for source terms on the wing.

Ck can be interpreted as the velocity caused by the kth panel
at point P , it is calculated for a panel of unit strength. The
same interpretation holds for Bk regarding the source terms.
For more details on the calculation of the influence coefficients
Ck and Bk we refer the reader to [12]. The total velocity at
the point P is the velocity caused by the panels plus the free
stream velocity. To set the total velocity in the normal direction
to the panel to zero, the contribution of panels should cancel
out that of the free stream velocity:
( N∑

k=1

Ckμk +

Nw∑
l=1

Clμl +

N∑
k=1

Bkσk

)
· n = −v∞ · n. (17)

Equation (17) should hold at every collocation point. Applying
this equation to each collocation point we end up with a
system of N equations with N unknowns. This system of
linear equations is then solved for the unknowns which are
the strengths of the doublet panels. It should be mentioned
that the strength of the kthsource panels is already set to

σ(k) = v∞ · n(k) (18)

and is moved to the right hand side before solving the system
of linear equations. v∞ is the free stream velocity vector.
The strength of wake panels is also calculated in terms of
doublet strength at the upper and lower neighboring panels of
the trailing edge (Fig. 3 ) using the Kutta condition.

[12]

The Kutta condition implies that the circulation at the
trailing edge should be zero. Three panels intersect at the
trailing edge. These are the wake panel and the two wing
panels on the upper and lower surface of the wing. The Kutta
condition is satisfied by setting the difference in the strength
of upper and lower panel to wake strength:

μw = μupper − μlower. (19)

Strength of the doublet panels are calculated by solving the
resulting system of linear equations. In the post-processing
step the velocity at the points of interest, which are the
collocation points in particular, is calculated. The pressure is
then calculated from the steady state Bernoulli equation. Using
the Bernoulli equation, the pressure coefficient reads:

cp =
p− p∞
1
2ρV

2∞
= 1−

( ‖v‖
‖v∞‖

)2

. (20)

Fig. 2 Discretization of the wing surface into panels, from

Fig. 3 Wake panels used to apply the Kutta condition, from
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Fig. 4 shows the calculated pressure distribution at the
middle section of a NACA0012 wing for an angle of attack
of 6 degrees. The results are compared with the ones from
XFLR5 [13].

0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

1.5

2

x/c

−
c p

XFLR5
Panel Method

α = 6◦

B. Structural Model

Structural analysis of the membrane wing consists of two
steps: Form Finding and Nonlinear Static analysis.

In structural analysis the finite element method is used and
displacements are calculated for a specific structure under
applied load. Form Finding of membrane structures can be
seen as the inverse problem of structural analysis. Prestressed
membrane structures are usually supported at the edges by
pretensioned edge cables. In the inverse problem of form
finding the stresses in membrane and edge cables are given
and support conditions (fixed boundaries) are defined. The goal
of the form finding analysis is to find the shape at which an
equilibrium between structural forces exists. In other words,
form finding analysis calculates the equilibrium shape of the
membrane enclosed by a given boundary and with predefined
stress distributions. It has been inspired by the works of the
German architect, Frei Otto [14], and was originally developed
for form finding of cable structures. Form finding could be
done using different approaches like Force Density Method
[15], Dynamic Relaxation [16] or Updated Reference Strategy
(URS) [17], [18]. We have used the URS based method
available in the in-house structural solver CARAT++. As a
classical form finding example, the 4 point tent is presented
in Fig. 5.

CARAT++ has also been used for performing static
nonlinear analysis using the load-control method.

C. FSI Simulation Strategy

In order to link the fluid solver (OpenFOAM) to the
structural solver (CARAT++) for the partitioned analysis of
the FSI problem [19] a coupling tool is needed. The coupling
is done using an in-house coupling tool called EMPIRE.

The coupling tool takes care of the communication between
the two solvers. At each iteration it first receives the
discretized pressure field from the fluid solver. The structural
solver needs nodal forces to calculate displacements. The

state. Bottom: equilibrium state

coupling tool maps the pressure from fluid mesh to structure
mesh, calculates the equivalent nodal force and sends it to
the structural solver. The structural solver then calculates
displacement field, the coupling tool receives the calculated
displacement and sends it to corresponding nodes of the fluid
mesh. The fluid solver applies the received displacement to
its mesh and proceeds to the next iteration. For a steady
state problem this iterative procedure is repeated until it is
converged to the steady state solution.

III. RESULTS

The studied wing with S809 airfoil profile can be seen in
Fig. 6. It has a span of 4.5m and a uniform chord length
of 1m along the span. Dihedral and sweep angles are both
zero. Upper and lower membranes are wrapped around the
rigid leading edge which extends up to 10% of the chord.
The membranes are supported by 4 spars and by an edge
cable at the trailing edge. The 4 spars devide the wing into
3 uniform segments. Structural properties of the membranes,
spars (which are modeled as beams) and edge cable are
summarized in Tables I to III.

Fig. 4 Pressure distribution over a NACA0012 wing section, Fig. 5 Form finding analysis of a 4 point tent. Top: initial

Fig. 6 Wing planform
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TABLE I: MEMBRANE PROPERTIES, (U: UPPER, L:
LOWER )

E 84MPa
ρ 1400kg/m3

t 0.48mm
σu
chordwise 300kPa
σu
spanwise 1600kPa

σl
chordwise 300kPa
σl
spanwise 1600kPa

TABLE II: TRAILING EDGE CABLE PROPERTIES

E 125GPa
ρ 7800kg/m3

radius 4mm
σ 50MPa

A. Form Finding

The equilibrium state of the wing with structural parameters
presented in the Tables I to III is calculated in a form finding
analysis. The deformed state is compared with the reference
state in Fig. 7. Membranes and the edge cable pull against
each other and as a result, the edge cables are moved toward
the leading edge with maximum displacement at the middle
of each wing segment. The prestresses in the membranes
form double-curved surfaces, where the upper membranes are
moved downwards and lower membranes are moved upwards.
While the cross section remains unchanged at the 4 spars, due
to the deformation of the two membranes, the cross section
of the wing changes continuously on other sections along the
span. Fig. 8 also shows how the cross section at the middle
of the wing deviates form the initial S809 profile.

state. Bottom: equilibrium state

section). Solid line: initial state. Dashed line: equilibrium
state

B. Fluid Setup

For the fluid side, SimpleFoam solver from OpenFOAM has
been used for performing steady state CFD simulations. Fig.

TABLE III: BEAM PROPERTIES

E 190GPa
ρ 7800kg/m3

A 2cm× 12cm

9 shows the discretized computational domain used for CFD
simulations. It consists of 2.9 million hexahedral cells, which
results in a y+ value of about 70. To check if the mesh is fine
enough, the results of the Reynolds number of Re = 106 are
compared with the experimental and numerical results reported
in [20]. The comparison has been made only up to an angle
of attack of 9◦, for higher angles of attack a finer mesh could
be needed to properly capture stall effects.

The k − ωSST model has been used. OpenFOAM wall
functions are used at wing surface, kqRWallFunction for k and
omegaWallFunction for ω. The velocity at the inlet is 30m/s
which corresponds to a Reynolds number of 2× 106

C. FSI Simulations

FSI simulations have been done for 7 different angles of
attack from 0◦ to 9◦ with an increment of 1.5◦. Convergence to
steady state solution for the case of using panel method solver
is about 25 times faster than simpleFoam solver. For both cases
a relaxation factor of 0.15 has been used for the displacement
field. First, we compare the convergence behavior of the
displacements for each approach to the steady state solution
(Fig. 10). Displacement in y direction for the point at the
mid-span section of the wing with x/c = 0.5 is compared (c is
the chord length). While with the panel method convergence is
reached within 20 iterations, FSI simulation using SimpleFoam
takes 450 iterations to converge. The time each iteration takes
is also different in the two approaches. Overall, in case of the
panel method convergence is reached approximately 25 times
faster. For this particular case FSI CFD simulation has taken
about 7.5 hours to converge using 4 processors, but FSI panel
has converged within about 20 minutes on a single processor
of the same machine. For α = 3◦ the converged displacement
is 0.033m from FSI panel and 0.035m from FSI CFD.

The comparison of the two approaches for the selected point
is summarized in Table IV. For α = 0◦ both approaches result
the same displacement. It is not the case for higher angles
of attack as the panel solver tends to underpredict the overall

Fig. 7 Form finding of the membrane wing. Top: initial

Fig. 8 Form finding of the membrane wing (mid-span

Fig. 9 Computational domain
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2 4 6 8 10 12 14 16 18 20

0

0.005

0.01

0.015

0.02

0.025

0.03

di
sp
Y
(
m
)

0 50 100 150 200 250 300 350 400 450

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

iteration

di
sp
Y
(
m
)

point. Top: FSI Panel. Bottom: FSI CFD

TABLE IV: COMPARISON OF DISPLACEMENT (m) IN y
DIRECTION FOR DIFFERENT ANGLES OF ATTACK

α(deg) FSI Panel FSI CFD %diff
0 0.028 0.028 0
1.5 0.030 0.031 3.22
3 0.033 0.035 5.71
4.5 0.035 0.038 7.89
6 0.038 0.040 5.00
7.5 0.04 0.041 2.44
9 0.042 0.039 7.69

pressure distribution and as a consequence, it results in smaller
displacements. It is not the case for α = 9◦. For this angle of
attack the panel solver overpredicts the pressure and results in
a larger displacement. It should be a result of neglecting the
viscous effects, which play an important role as the flow gets
closer to the stall region at α = 9◦.

A better comparison can be made by comparing the
displacement along the whole span and not only at one certain
point. This has been done for the section at the mid-span of
the wing (Fig. 11). For the first 4 angles of attack (up to 4.5◦)
and especially for the upper surface of the wing there is a very
good agreement between the resulting displacement from the
two approaches. But from the angle of attack of 6◦, they start
to deviate from each other.

As the angle of attack increases we get closer to the stall
point and viscous effects become more and more important.
These effects are neglected in the panel method which causes
its accuracy to decrease as the angle of attack is increased.
Moreover, as the angle of attack increases, the pressure peak
on the membrane part of the lower surface of the wing
increases as well. The fluid pushes the membrane upward,
while the leading edge part of the wing is rigid. This results
in a discontinuity in the slope of wing surface, as shown

0 0.2 0.4 0.6 0.8 1

−0.02

−0.01

0

0.01

0.02

0.03

x/c

di
sp
Y
(
m
)

α = 0
◦

0 0.2 0.4 0.6 0.8 1

−0.02

−0.01

0

0.01

0.02

0.03

x/c

di
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Y
(
m
)

α = 1.5◦

0 0.2 0.4 0.6 0.8 1

−0.01

0

0.01

0.02

0.03

x/c

di
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Y
(
m
)

α = 3
◦

0 0.2 0.4 0.6 0.8 1

−0.01

0

0.01
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di
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α = 4.5◦
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0
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di
sp
Y
(
m
)

α = 6
◦

0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

x/c

di
sp
Y
(
m
)

α = 7.5◦

0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

x/c

di
sp
Y
(
m
)

α = 9
◦

section. FSI CFD: solid line. FSI Panel: dashed line

Fig. 10 Convergence of the displacement for a selected

Fig. 11 Displacement in y direction along the mid-span
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α = 0
◦

α = 1.5◦

α = 3
◦

α = 4.5◦

α = 6
◦

α = 7.5◦

α = 9
◦

dashed line. Undeformed section: dot-dashed line. Deformed
section: solid line

in Fig. 12, and the panel solver does not seem to be able
to capture the flow physics at the kink: it overpredicts the
pressure in the vicinity of the kink and consequently the
resulting displacement from the two solvers deviate from each
other.

Membrane wings enable a lighter wing construction and
their flexibility is an advantage in terms of dynamic loading
applied to the wing. It should also have an improved
performance compared to rigid wing configurations in stall
region because of the so called soft-stall characteristics of
the membrane wing. In order to assess the aerodynamic

performance of the studied wing section, lift coefficient, drag
coefficient and lift to drag ratio of the membrane wing are
compared with the initial rigid wing configuration (the one
before form finding). As it can be seen in Fig. 13, the drag
coefficient is smaller for the whole range of studied angles
of attack. At smaller angles of attack, the rigid wing has
better lift characteristics than the membrane wing, but from
α ≈ 2.5◦ it is the membrane wing which shows a higher lift
coefficient. The reason for that is mainly the flexibility of the
upper surface. The upper membrane is pulled upward which
increases the thickness of the wing section and causes greater
lift compared with the rigid case.
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equivalent rigid wing configuration for varying angle of
attack. Rigid wing: solid line. Membrane wing: dashed line

IV. CONCLUSION

Fluid-structure interaction simulation of a semi-flexible
wing configuration has been done over a range of angles
of attack. Two different fluid models have been used: CFD
simulation based on RANS equations and vortex panel
method. The panel method saves computation time while
providing a good accuracy up to an angle of attack of 6◦.
This makes the panel method an appropriate tool for early
design stages where an extensive parameter study needs to be
done. Its accuracy could be improved by coupling boundary
layer models to it. The studied membrane wing concept shows
a higher slope of lift curve as function of angle of attack and
has a better lift to drag ratio compared to the equivalent rigid
wing.

Fig. 12 Airfoil shape at the mid-span section. S809 airfoil:

Fig. 13 Comparison of the membrane wing with the
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