Total Chromatic Number of Δ -Claw-Free 3-Degenerated Graphs

Wongsakorn Charoenpanitseri

Abstract—The total chromatic number $\chi''(G)$ of a graph G is the minimum number of colors needed to color the elements (vertices and edges) of G such that no incident or adjacent pair of elements receive the same color Let G be a graph with maximum degree $\Delta(G)$. Considering a total coloring of G and focusing on a vertex with maximum degree. A vertex with maximum degree needs a color and all $\Delta(G)$ edges incident to this vertex need more $\Delta(G) + 1$ distinct colors. To color all vertices and all edges of G, it requires at least $\Delta(G) + 1$ colors. That is, $\chi''(G)$ is at least $\Delta(G) + 1$. However, no one can find a graph G with the total chromatic number which is greater than $\Delta(G) + 2$. The Total Coloring Conjecture states that for every graph G, $\chi''(G)$ is at most $\Delta(G) + 2$.

In this paper, we prove that the Total Coloring Conjectur for a Δ -claw-free 3-degenerated graph. That is, we prove that the total chromatic number of every Δ -claw-free 3-degenerated graph is at most $\Delta(G) + 2$.

Keywords—Total colorings, the total chromatic number, 3-degenerated.

I. INTRODUCTION

 $A \xrightarrow{m-coloring} of a graph G is a coloring <math>f : V(G) \rightarrow \{1, 2, \dots, m\}$. A *m*-coloring is *proper* if adjacent vertices have different colors. A graph is *m*-colorable if it has a proper *m*-coloring. The *chromatic number* $\chi(G)$ is the least positive integer *m* such that G is *m*-colorable.

A *m*-edge coloring of a graph G is a coloring $f : E(G) \rightarrow \{1, 2, \ldots, m\}$. A *m*-edge coloring is proper if incident edges have different colors. A graph is *m*-edge-colorable if it has a proper *m*-edge coloring. The edge chromatic number $\chi'(G)$ of a graph G is the least positive integer m such that G is *m*-edge-colorable.

A *m*-total coloring of a graph G is a coloring $f: V(G) \cup E(G) \rightarrow \{1, 2, ..., m\}$. A *m*-total coloring is *proper* if incident edges have different colors, adjacent vertices have different colors, and edges and its endpoints have different colors. A graph is *m*-total colorable if it has a proper *m*-total coloring. The total chromatic number $\chi''(G)$ of a graph G is the least positive integer *m* such that G is *m*-total colorable.

However, no one can find a graph G with $\chi''(G) > \Delta(G) + 2$. The Total Coloring Conjecture, introduced independently by Behzad [1] and Vizing [2], states that for every graph G, $\chi''(G) \leq \Delta(G) + 2$. In 2003, Zhou, Matsuo and Nishizeki [3] found the total chromatic number of a series parallel graph which is a 2-degenerated graph. Furthermore, the Total Coloring Conjecture has been proved for graphs of sufficiently small maximum degree. It was proved for $\Delta(G) = 3$ by Rosenfeld [4] and indepently by Vijayaditya [5], and an

W. Charoenpanitseri is with the Department of Mathematics, Rangsit University, Thailand, 12000 (e-mail: Wongsakorn.c@rsu.ac.th).

algorithmic proof was presented by Yap [6]. For $\Delta(G) = 4$ Kostochka [7] gave a proof of $\chi''(G) \leq 6$. The case $\Delta(G) = 5$ was settled in the doctoral thesis of Kostochka [8], [9], who proved that $\chi''(G) \leq \Delta(G) + 2$ is valid for all graphs G with $\Delta(G) \leq 5$.

Proposition 1. Let G be a nontrivial graph. We obtain $\chi''(G) \geq 3$.

Proof: Since G is a nontrivial graph, there is an edge uv where $u, v \in V(G)$. We need 3 colors to label vertices u, v and edge uv. Thus $\chi''(G) \ge 3$.

The following statments are the chromatic number, the edge chromatic number and the total chromatic number of some well known graphs such as cycle and complete graphs. A cycle is a graph with a single cycle through all vertices. A cycle with n vertices is denoted by C_n . A complete graph is a graph whose vertices are pairwise adjacent. The complete graph with n vertices is denoted by K_n .

Remark 1.
$$\chi(C_n) = \chi'(C_n) = \begin{cases} 2 & \text{if } n \text{ is even}, \\ 3 & \text{if } n \text{ is odd.} \end{cases}$$

Proof: Let $V(C_n) = \{v_1, v_2, \ldots, v_n\}$. If *n* is even, we color all vertices by color 1 and 2 alternatively to obtain $\chi(C_n) = 2$. Similarly, $\chi'(C_n) = 2$ when *n* is even. If *n* is odd, we color a vertex of C_n by color 1 and color remaining vertices by color 2 and color 3 alternatively to obtain $\chi(C_n) = 3$. Similarly, $\chi'(C_n) = 3$ when *n* is odd.

Proposition 2. [10]
$$\chi''(C_n) = \begin{cases} 3 & \text{if } n \equiv 0 \pmod{3}, \\ 4 & \text{otherwise.} \end{cases}$$

Theorem 1. [11], [12] For every graph G, $\chi(G) \leq \Delta(G)+1$. The equality holds if and only if G is a complete graph or an odd cycle.

Remark 2. $\chi''(C_n) \ge \chi'(C_n) = \chi(C_n).$

Proof: By Remark 1, we obtain $\chi(C_n) = \chi'(C_n)$. By Theorem 1, $\chi(C_n) = \chi'(C_n) \le 3$. By Proposition 2, $\chi(C_n) = \chi'(C_n) \le 3 \le \chi''(C_n)$.

Proposition 3. $\chi(C_n) = \chi'(C_n) = \chi''(C_n)$ if and only if $n \equiv 3 \pmod{6}$.

Proof: Sufficiency. Assume that $n \equiv 3 \pmod{6}$. Since C_n is an odd cycle, we get $\chi(C_n) = 3$ and $\chi'(C_n) = 3$. By Proposition 2, we get $\chi''(C_n) = 3$. Therefore, $\chi(C_n) = \chi'(C_n) = \chi''(C_n)$.

Necessity. We will prove by contrapositive. Assume that $n \not\equiv 3 \pmod{6}$. By the division algorithm, n = 6k, 6k + 1, 6k + 1

2, 6k + 4 or 6k + 5 for some integer k. Case 1. n = 6k, 6k + 2 or 6k + 4. Since C_n is an even cycle, we get $\chi(C_n) = 2$. However, $\chi''(C_n) \ge \Delta(C_n) + 1 = 3$. Then $\chi(C_n) \ne \chi''(C_n)$. Case 2. n = 6k + 1 or n = 6k + 5.

Since *n* is not divisible by 3, by Proposition 2, we get $\chi''(C_n) = 4$. By Theorem 1, $\chi(C_n) \leq \Delta(C_n) + 1 = 3$ and $\chi''(C_n) = 4$. Then $\chi(C_n) \neq \chi''(C_n)$. Therefore, $\chi(C_n) = \chi'(C_n) = \chi''(C_n)$ if and only if $n \equiv 3 \pmod{6}$.

It is easy to find a coloring of a complete graph K_n . That is, $\chi(K_n) = n$ However, it is quite complicated to find an edge coloring or a total coloring of a complete graph K_n . An edge coloring of K_n was found by Fiorini and Wilson [13] and a total coloring of K_n was found by Bezhad, Chartrand and Cooper [14].

Proposition 4. [13]
$$\chi'(K_n) = \begin{cases} n & \text{if } n \text{ is odd,} \\ n-1 & \text{if } n \text{ is even.} \end{cases}$$

Proposition 5. [14] $\chi''(K_n) = \begin{cases} n & \text{if } n \text{ is odd,} \\ n+1 & \text{if } n \text{ is even.} \end{cases}$

Let G be a graph. It requires more colors to color all vertices and edges of G than to color only vertices of G. Hence, $\chi''(G) \ge \chi(G)$. Similarly, $\chi''(G) \ge \chi'(G)$. However, it is not true that $\chi'(G) \ge \chi(G)$ or $\chi'(G) \le \chi(G)$. For example, $\chi'(K_4) = 3$ but $\chi(K_4) = 4$.

Proposition 6. If n is odd then $\chi(K_n) = \chi'(K_n) = \chi''(K_n)$. Otherwise, $\chi(K_n) = \chi'(K_n) + 1 = \chi''(K_n) - 1$.

Proof: Case 1. *n* is odd. By Proposition 4 and Proposition 5, we get $\chi(K_n) = \chi'(K_n) = \chi''(K_n) = n$. Case 2. *n* is even

By Proposition 5, we get $\chi''(K_n) = n + 1$. However, $\chi(K_n) = n$. Thus $\chi(K_n) = \chi''(K_n) - 1$. By Proposition 4, we get $\chi'(K_n) = n - 1$. Thus $\chi(K_n) = \chi''(K_n) + 1$.

Theorem 2. Let G be a graph. If G is not a complete graph of even degree, then $\chi''(G) \ge \chi'(G) \ge \chi(G)$. Otherwise, $\chi(G) = \chi'(G) - 1 = \chi''(G) + 1$.

Proof: Case 1. G is neither a complete graph nor an odd cycle. By Theorem 1, $\chi(G) \leq \Delta(G)$. Since $\Delta(G) \leq \chi'(G)$ and $\chi'(G) \leq \chi''(G)$, we get $\chi''(G) \geq \chi'(G) \geq \chi(G)$. *Case 2. G* is an odd cycle. By Remark 2, $\chi''(G) \geq \chi'(G) = \chi'(G) =$

 $\chi(G)$. *Case 3. G* is a complete graph. If *n* is odd then $\chi(K_n) = \chi(K_n)$

 $\chi'(K_n) = \chi''(K_n)$ and if *n* is even then $\chi(K_n) = \chi'(K_n) + 1 = \chi''(K_n) - 1$ by Proposition 6.

The following theorem gives necessary and sufficient conditions for the equality of the chromatic number, the edge-chromatic number and the total chromatic number.

Theorem 3. Let G be a graph with n vertices. $\chi(G) = \chi'(G) = \chi''(G)$ if and only if G is C_n where $n \equiv 3 \pmod{6}$ or K_n where n is odd.

Proof: Sufficiency. $\chi(G) = \chi'(G) = \chi''(G)$ by Proposition 3 and Proposition 6. *Necessity.* Assume that $\chi(G) = \chi'(G) = \chi''(G)$. By Theorem 1 and Remark **??**, we get $\chi(G) \leq \Delta(G) + 1 \leq$ $\chi''(G)$. Then $\chi(G) = \Delta(G) + 1 = \chi''(G)$. Thus $\chi(G) > \Delta(G)$. From Theorem 1, G is an odd cycle or a complete graph. By Proposition 3 and Proposition 6, G is a cycle of length $n \equiv 3 \pmod{6}$ or a complete graph of order n when n is odd.

In Fig. 1, we can remove all vertices by this order $v_7, v_6, v_5, v_4, v_3, v_2, v_1$ which satisfy the definition of 3-degenerated graph.

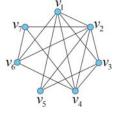


Fig. 1 A 3-degenerated graph

A *m*-claw in a graph G is the bipartite $K_{1,3}$ whose all leaves are vertices with degree m in G. A graph G is *m*-claw-free if G has no m-claw as an induced subgraph. A Δ -claw in a graph G is the bipartite $K_{1,3}$ whose all leaves are vertices with maximum degree in G. A graph G is Δ -claw-free if G has no Δ -claw as an induced subgraph.

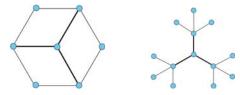


Fig. 2 graphs which have exactly 1 Δ -claw

Although each graph in Fig. 2 has 4 claws, it has only 1 Δ -claw. In this paper, N(v) is denoted the set of all vertices adjacent to a vertex v.

II. MAIN RESULT

Our main result is that every Δ -claw-free 3-degenerated graph satisfies the Total Coloring Conjecture. Let G be a Δ -claw-free 3-degenerated graph. We will prove that if $m \geq \Delta(G) + 2$ and G is (m - 2)-claw-free, then $\chi''(G) \leq$ m by induction on the number of vertices. Since G is a 3-degenerated graph, it can be succesive removal vertices with degree at most 3. Let v the first removal vertex. The proof is divided into four cases; the first case is d(v) = 1, the second case is d(v) = 2, the third case and the fourth case are d(v) = 3 with different conditions.

Lemma 1. Let G be a graph and contain a vertex v with degree 1. If $\chi''(G - v) \leq m$ where m is an integer such that $m \geq \Delta(G) + 2$ then $\chi''(G) \leq m$.

Let $m \ge \Delta(G-v) + 2$ be an integer. Assume that $\chi''(G-v) \le m$. Then there is a proper total coloring $f: V(G-v) \cup E(G-v) \to [m]$. Since $d_{G-v}(u) + 1 \le m - 1$, there exists a remaining color in [m], say r, which is not used to color u and edges incident to u in G-v. Since $m \ge \Delta(G) + 2 \ge$

d(v) + 2 = 3. Thus we can pick a color s which differs from f(u) and r.

Let $f':V(G)\cup E(G)\rightarrow [m]$ be a total coloring defined by

$$f'(x) = \begin{cases} f(x) & \text{if } x \in V(G - v) \cup E(G - v), \\ r & \text{if } x = uv, \\ s & \text{if } x = v. \end{cases}$$

The properties of the proper total coloring f, color r and color s yield that f' is a proper total coloring from $V(G) \cup E(G)$ to [m]. Therefore $\chi''(G) \leq m$.

Lemma 2. Let v be a vertex with degree 2 of a graph G and $m \ge \Delta(G) + 2$. If $\chi''(G - v) \le m$ then $\chi''(G) \le m$.

Proof:

Let u_1 and u_2 be the vertices which are adjacent to v. Let $m \ge \Delta(G) + 2$. Assume that $\chi''(G - v) \le m$. If $\Delta(G) \le 2$, each component of G is a path or a cycle. Then $\chi''(G) \leq$ $\Delta(G) + 2 \leq m$. Assume that $\Delta(G) \geq 3$.

It suffices to show that there is a proper total coloring from $V(G) \cup E(G)$ to [m].

Since $\chi''(G-v) \leq m$, there is a proper total coloring $f: V(G-v) \cup E(G-v) \rightarrow [m]$. Since $d_{G-v}(u_1) + 1 \leq d_{G-v}(u_1) + 1 \leq d_{G-v}(u_1)$ $d_G(u_1) \leq \Delta(G) \leq m-2$, we use at most m-2 colors to color u_1 and edges incident to u_1 in G - v. Then there are 2 remaining colors for coloring u_1v . Let one be r_1 . Similarly, there are 2 remaining colors for coloring u_2v . Pick the one which differs from r_1 , say r_2 . Since $\Delta(G) \ge 3$, we get $m \ge 5$. Let s be a color which differs from $f(u_1), f(u_2), r_1$ and r_2 . Let $f': V(G) \cup E(G) \to [m]$ be a total coloring defined by

$$f'(x) = \begin{cases} f(x) & \text{if } x \in V(G-v) \cup E(G-v) \\ r_1 & \text{if } x = u_1 v, \\ r_2 & \text{if } x = u_2 v, \\ s & \text{if } x = v. \end{cases}$$

By Properties of f, color r_1 , color r_2 and color s. Then f'is a proper total coloring from $V(G) \cup E(G)$ to [m]. Hence $\chi''(G) \le m.$

Lemma 3. Let v be a vertex with degree 3 of a graph G and $m \ge \Delta(G) + 2.$

If $\exists u \in N(v), d_G(u) \leq m-3$ and $\chi''(G-v) \leq m$, then $\chi''(G) \le m.$

Proof: Let v be a vertex with degree 3 of a graph G and $m \geq \Delta(G) + 2$. Assume that $\exists u \in N(v), d_G(u) \leq m - 3$ and $\chi''(G-v) \leq m$. As mention in first page, for any graph G such that $\Delta(G) \leq 5$, we know that $\chi''(G) \leq \Delta(G) + 2 \leq m$. Suppose that $\Delta(G) \geq 6$. Let u_1, u_2 and u_3 be the vertices which are adjacent to v. Without loss of generality, assume that $d_G(u_3) \leq m-3$. Since $\chi''(G-v) \leq m$, there is a proper total coloring $f: V(G-v) \cup E(G-v) \to [m]$.

Since $\chi''(G-v) \leq m$, there is a proper total coloring f: $V(G-v)\cup E(G-v) \rightarrow [m]$. Since $d_{G-v}(u_1)+1 \leq d_G(u_1) \leq$ $\Delta(G) \leq m-2$, we use at most m-2 colors to color u_1 and edges incident to u_1 in G - v. Then there are 2 remaining colors for coloring u_1v . Let one be r_1 . Similarly there are 2 remaining colors for coloring u_2v . Pick the one which differs from r_1 , say r_2 . Since $d_{G-v}(u_3)+1 \le d_G(u_3) \le m-3$, there are 3 remaining colors for coloring u_3v . Pick the one which differs from r_1 and r_2 , say r_3 . Since $\Delta(G) \ge 6$, we get $m \ge 8$. Let s be a color which differs from $f(u_1), f(u_2), f(u_3), r_1, r_2$ and r_3 . Let $f': V(G) \cup E(G) \to [m]$ be a total coloring defined by

$$f'(x) = \begin{cases} f(x) & \text{if } x \in V(G-v) \cup E(G-v), \\ r_1 & \text{if } x = u_1 v, \\ r_2 & \text{if } x = u_2 v, \\ r_3 & \text{if } x = u_3 v, \\ s & \text{if } x = v. \end{cases}$$

Then f' is a proper total coloring from $V(G) \cup E(G)$ to [m]. Hence $\chi''(G) \leq m$.

Theorem 4. [12] For sets A_1, A_2, \ldots, A_n , $\exists a_i \in A_i$ such that $a_i \neq a_j$ for $i \neq j$ if and only if $|\bigcup A_i| \ge |S|$ for every $S \subseteq [n].$

Remark 3. Let A_1, A_2, A_3 be sets containing at least 2 elements. If $A_1 \cup A_2 \cup A_3$ has at least 3 elements, then there are $a_1 \in A_1, a_2 \in A_2, a_3 \in A_3$ such that a_1, a_2, a_3 are different.

Proof: Let A_1, A_2, A_3 be sets containing at least 2 elements. Assume that $A_1 \cup A_2 \cup A_3$ has at least 3 elements. To use Theorem 4, we consider following sets

- $\begin{array}{l} \bullet \quad |A_1|, |A_2|, |A_3| \geq 1, \\ \bullet \quad |A_1 \cup A_2|, |A_2 \cup A_3|, |A_1 \cup A_3|, \\ \bullet \quad |A_1 \cup A_2 \cup A_3| \geq 3. \end{array}$

Thus there are $a_1 \in A_1, a_2 \in A_2, a_3 \in A_3$ such that a_1, a_2, a_3 are different.

Lemma 4. Let v be a vertex with degree 3 of a graph G and m be integer such that $m \geq \Delta(G) + 2$. If N(v) is not an independent set and $\chi''(G-v) \leq m$ then $\chi''(G) \leq m$.

Proof: Let v be a vertex with degree 3 of a graph G and $m \geq \Delta(G) + 2$. Assume that N(v) is not an independent set and $\chi''(G-v) \leq m$. As mention in first page, for any graph G such that $\Delta(G) \leq 5$, we know that $\chi''(G) \leq \Delta(G) + 2 \leq m$. Suppose that $\Delta(G) \geq 6$. Let u_1, u_2 and u_3 be the vertices which are adjacent to v. Without loss of generality, assume that u_1 and u_2 are adjacent. Since $\chi''(G-v) \leq m$, there is a proper total coloring $f: V(G-v) \cup E(G-v) \rightarrow [m]$. Since $d_{G-v}(u_1) + 1 \leq d_G(u_1) \leq \Delta(G) \leq m-2$, we use at most m-2 colors to color u_1 and edges incident to u_1 in G-v. Then there are 2 remaining colors for coloring vu_1 , say r_1, r_2 . Similarly, there are 2 remaining colors for coloring vu_2 , say s_1, s_2 and there are 2 remaining colors for coloring vu_3 , say t_1, t_2 . Let $R = \{r_1, r_2\}, S = \{s_1, s_2\}, T = \{t_1, t_2\}.$

Case1. $|R \cup S \cup T| > 3$.

By Remark 3, there is $r \in R, s \in S, t \in T$ such that r, s, t are different

Since $\Delta(G) \geq 6$, we get $m \geq 8$. Let c be a color which differs from $f(u_1), f(u_2), f(u_3), r, s, t$. Let $f': V(G) \cup$ $E(G) \rightarrow [m]$ be a total coloring defined by

$$f'(x) = \begin{cases} f(x) & \text{if } x \in V(G-v) \cup E(G-v), \\ r & \text{if } x = u_1 v, \\ s & \text{if } x = u_2 v, \\ t & \text{if } x = u_3 v, \\ c & \text{if } x = v. \end{cases}$$

Then f' is a proper total coloring from $V(G) \cup E(G)$ to [m]. Hence $\chi''(G) \leq m$.

Case2. $|R \cup S \cup T| = 2$.

Thus R = S = T. Without loss of generality, let $r_1 = s_1 = t_1$ and $r_2 = s_2 = t_2$. Let $g: V(G - v) \cup E(G - v) \rightarrow [m]$ be a total coloring of a graph G - v defined by

$$g(x) = \begin{cases} r_1 & \text{if } x = u_1 u_2, \\ g(x) & \text{otherwise.} \end{cases}$$

Then g is a proper total coloring from $V(G-v) \cup E(G-v)$ to [m]. Moreover, remaining color sets for vu_1, vu_2 and vu_3 are $\{f(u_1u_2), r_2\}$, $\{f(u_1u_2), r_2\}$ and $\{r_1, r_2\}$, respectively. Since $f(u_1u_2) \neq r_1, r_2$, we get g is in Case 1. Similar to Case 1, we can use g to define a proper total coloring from $V(G) \cup E(G)$ to [m].

The main result is obtained by combining Lemma 1, Lemma 2, Lemma 3 and Lemma 4.

Theorem 5. Every Δ -claw-free 3-degenerated graph satisfies the Total Coloring Conjecture.

Proof: First, we will prove that for a 3-degenerated graph G with n vertices, if $m \ge \Delta(G) + 2$ and G is (m-2)-claw-free, then $\chi''(G) \le m$.

Let P(n) be the statement that for a 3-degenerated graph G with n vertices, if $m \ge \Delta(G) + 2$ and G is (m-2)-claw-free, then $\chi''(G) \le m$.

It is easy to see that P(1) holds. Assume that $P(1), P(2), \ldots, P(k-1)$ hold. Let G be a 3-degenerated graph with k vertices. Then G has a vertex with degree at most 3, say v. Assume that $m \ge \Delta(G) + 2$ and G is (m-2)-claw-free. Then G - v is also 3-degenerated and (m-2)-claw-free. Thus $\chi''(G - v) \le m$.

Case 1. $d_G(v) = 1$. By Lemma 1, we get $\chi''(G) \le m$.

Case2. $d_G(v) = 2$. By Lemma 2, we get $\chi''(G) \le m$.

Case3.
$$d_G(v) = 3$$
.

Since G is (m-2)-claw-free, $\exists u \in N(v), d_G(v) \neq m-2$ or N(v) is not an independent set.

(3.1) $\exists u \in N(v), d_G(v) \neq m-2$. Since $m \ge \Delta(G) + 2$, we get $d_G(u) \le m-3$. By Lemma 3, we get $\chi''(G) \le m$.

(3.2) N(v) is not an independent set. By Lemma 4, we get $\chi''(G) \leq m$. Hence P(k) hold.

By mathematic induction, P(n) holds for any natural number n.

Let G be Δ -claw-free 3-degenerated graph To prove the Total Coloring Conjecture, we focus only when $m = \Delta(G) + 2$. Thus $m - 2 = \Delta(G)$; hence, G is (m - 2)-claw-free. By the statement, $\chi''(G) \leq m = \Delta(G) + 2$. That is, G satisfies the Total Coloring Conjecture.

REFERENCES

- M. Behzad, The total chromatic number of a graph Combinatorial Mathematics and its Applications, Proceedings of the Conference Oxford Academic Press N. Y. 1-9, 1971.
- [2] V. G. Vizing, On evaluation of chromatic number of a p-graph (in Russian) Discrete Analysis, Collection of works of Sobolev Institute of Mathematics SB RAS 3 3-24, 1964.
- [3] X. Zhou, Y. Matsuo, T. Nishizeki, List total colorings of series-parallel Graphs, Computing and Combinatorics, *Lecture Notes in Comput. Sci.* 2697, Springer Berlin, 172-181, 2003.
- [4] M. Rosenfeld, On the total coloring of certain graphs. Israel J. Math. 9 396-402, 1971.
- [5] N. Vijayaditya, On total chromatic number of a graph, J. London Math. Soc. 3 405-408, 1971.
- [6] H. P. Yap, Total colourings of graphs. Bull. London Math. Soc. 21 159-163, 1989.
- [7] A. V. Kostochka, The total colorings of a multigraph with maximal degree 4. Discrete Math. 17, 161-163, 1977.
- [8] A. V. Kostochka, Upper bounds of chromatic functions of graphs (in Russian). Doctoral Thesis, Novosibirsk, 1978.
- [9] A. V. Kostochka, Exact upper bound for the total chromatic number of a graph (in Russian). In: Proc. 24th Int. Wiss. Koll., Tech. Hochsch. Ilmenau, 1979 33-36, 1979.
- [10] H. P. Yap, *Total coloring of graphs*, Lecture Note in Mathematics Vol. 1623, Springer Berlin, 1996.
- [11] R. L. Brooks, On coloring the nodes of a network, Proc. Cambridge Phil. Soc. 37 194-197, 1941.
- [12] D. B. West, *Introduction to Graph Theory*, Prentice Hall, New Jersey, 2001.
- [13] S. Fiorini, R. J. Wilson, *Edge Coloring of Graphs*, Pitman London, 1977.
- [14] M. Bezhad, G. Chartrand, J. K. Cooper, The colors numbers of complete graphs, J. London Math. Soc. 42 225-228, 1967.