Search results for: Acid Sulfuric
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 760

Search results for: Acid Sulfuric

760 Evaluation of Corrosion Caused by Biogenic Sulfuric Acid (BSA) on the Concrete Structures of Sewerage Systems (Chemical Tests)

Authors: M. Cortés, E. Vera, O. Rojas

Abstract:

The research studies of the kinetics of the corrosion process that attacks concrete and occurs within sewerage systems agree on the amount of variables that interfere in the process. This study aims to check the impact of the pH levels of the corrosive environment and the concrete surface, the concentrations of chemical sulfuric acid, and in turn, measure the resistance of concrete to this attack under controlled laboratory conditions; it also aims to contribute to the development of further research related to the topic, in order to compare the impact of biogenic sulfuric acid and chemical sulfuric acid involvement on concrete structures, especially in scenarios such as sewerage systems.

Keywords: Acid Sulfuric, concrete, corrosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
759 A Comparison of Dilute Sulfuric and Phosphoric Acid Pretreatments in Biofuel Production from Corncobs

Authors: Jirakarn Nantapipat, Apanee Luengnaruemitchai, Sujitra Wongkasemjit

Abstract:

Biofuels, like biobutanol, have been recognized for being renewable and sustainable fuels which can be produced from lignocellulosic biomass. To convert lignocellulosic biomass to biofuel, pretreatment process is an important step to remove hemicelluloses and lignin to improve enzymatic hydrolysis. Dilute acid pretreatment has been successful developed for pretreatment of corncobs and the optimum conditions of dilute sulfuric and phosphoric acid pretreatment were obtained at 120 °C for 5 min with 15:1 liquid to solid ratio and 140 °C for 10 min with 10:1 liquid to solid ratio, respectively. The result shows that both of acid pretreatments gave the content of total sugar approximately 34–35 g/l. In case of inhibitor content (furfural), phosphoric acid pretreatment gives higher than sulfuric acid pretreatment. Characterizations of corncobs after pretreatment indicate that both of acid pretreatments can improve enzymatic accessibility and the better results present in corncobs pretreated with sulfuric acid in term of surface area, crystallinity, and composition analysis.

Keywords: Corncobs, Pretreatment, Sulfuric acid, Phosphoric acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3433
758 Nano-Alumina Sulfuric Acid: An Efficient Catalyst for the Synthesis of α-Aminonitriles Derivatives

Authors: Abbas Teimouri, Alireza Najafi Chermahini, Leila Ghorbanian

Abstract:

An efficient and green protocol for the synthesis of α- aminonitriles derivatives by one-pot reaction of different aldehydes with amines and trimethylsilyl cyanides has been developed using natural alumina, alumina sulfuric acid (ASA), nano-γ-alumina, nanoalumina sulfuric acid (nano-ASA) under microwave irradiation and solvent-free conditions. The advantages of methods are short reaction times, high yields, milder conditions and easy work up. The catalysts can be recovered for the subsequent reactions and reused without any appreciable loss of efficiency.

Keywords: Nano-γ-alumina, nano-alumina sulfuric acid, green synthesis, microwave irradiation, α-aminonitriles derivatives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5051
757 Compost quality Management by Adding Sulfuric Acid and Alkaline Wastewater of Paper Mill as two Amendments

Authors: Hamid Reza Alipour, Ali Mohammadi Torkashvand

Abstract:

In composting process, N high-organic wastes loss the great part of its nitrogen as ammonia; therefore, using compost amendments can promote the quality of compost due to the decrease in ammonia volatilization. With regard to the effect of pH on composting, microorganisms- activity and ammonia volatilization, sulfuric acid and alkaline wastewater of paper mill (as liming agent with Ca and Mg ions) were used as compost amendments. Study results indicated that these amendments are suitable for reclamation of compost quality properties. These held nitrogen in compost caused to reduce C/N ratio. Both amendments had a significant effect on total nitrogen, but it should be used sulfuric acid in fewer amounts (20 ml/kg fresh organic wastes); and the more amounts of acid is not proposed.

Keywords: Compost, Paper mill wastewater, sulfuric acid, Ammonia Volatilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
756 Hydrodynamic Force on Acoustically Driven Bubble in Sulfuric Acid

Authors: Zeinab Galavani, Reza Rezaei-Nasirabad, Rasoul Sadighi-Bonabi

Abstract:

Using a force balanced translational-radial dynamics, phase space of the moving single bubble sonoluminescence (m- SBSL) in 85% wt sulfuric acid has been numerically calculated. This phase space is compared with that of single bubble sonoluminescence (SBSL) in pure water which has been calculated by using the mere radial dynamics. It is shown that in 85% wt sulfuric acid, in a general agreement with experiment, the bubble-s positional instability threshold lays under the shape instability threshold. At the onset of spatial instability of moving sonoluminescing (SL) bubble in 85% wt sulfuric acid, temporal effects of the hydrodynamic force on the bubble translational-radial dynamics have been investigated. The appearance of non-zero history force on the moving SL bubble is because of proper condition which was produced by high viscosity of acid. Around the moving bubble collapse due to the rapid contraction of the bubble wall, the inertial based added mass force overcomes the viscous based history force and induces acceleration on the bubble translational motion.

Keywords: Bjerknes force, History force, Reynolds number, Sonoluminescence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
755 Resistance to Sulfuric Acid Attacks of Self-Consolidating Concrete: Effect Metakaolin and Various Cements Types

Authors: Kianoosh Samimi, Farhad Estakhr, Mahdi Mahdikhani, Faramaz Moodi

Abstract:

Due to their fluidity and simplicity of use, self-compacting concretes (SCCs) have undeniable advantages. In recent years, the role of metakaolin as a one of pozzolanic materials in concrete has been considered by researchers. It can modify various properties of concrete, due to high pozzolanic reactions and also makes a denser microstructure. The objective of this paper is to examine the influence of three type of Portland cement and metakaolin on fresh state, compressive strength and sulfuric acid attacks in self- consolidating concrete at early age up to 90 days of curing in lime water. Six concrete mixtures were prepared with three types of different cement as Portland cement type II, Portland Slag Cement (PSC), Pozzolanic Portland Cement (PPC) and 15% substitution of metakaolin by every cement. The results show that the metakaolin admixture increases the viscosity and the demand amount of superplasticizer. According to the compressive strength results, the highest value of compressive strength was achieved for PSC and without any metakaolin at age of 90 days. Conversely, the lowest level of compressive strength at all ages of conservation was obtained for PPC and containing 15% metakaolin. According to this study, the total substitution of PSC and PPC by Portland cement type II is beneficial to the increasing in the chemical resistance of the SCC with respect to the sulfuric acid attack. On the other hand, this increase is more noticeable by the use of 15% of metakaolin. Therefore, it can be concluded that metakaolin has a positive effect on the chemical resistance of SCC containing of Portland cement type II, PSC, and PPC.

Keywords: SCC, metakaolin, cement type, durability, compressive strength, sulfuric acid attacks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895
754 Enhancing Efficiency for Reducing Sugar from Cassava Bagasse by Pretreatment

Authors: S. Gaewchingduang, P. Pengthemkeerati

Abstract:

Cassava bagasse is one of major biomass wastes in Thailand from starch processing industry, which contains high starch content of about 60%. The object of this study was to investigate the optimal condition for hydrothermally pretreating cassava baggasses with or without acid addition. The pretreated samples were measured reducing sugar yield directly or after enzymatic hydrolysis (alpha-amylase). In enzymatic hydrolysis, the highest reducing sugar content was obtained under hydrothermal conditions for at 125oC for 30 min. The result shows that pretreating cassava baggasses increased the efficiency of enzymatic hydrolysis. For acid hydrolysis, pretreating cassava baggasses with sulfuric acid at 120oC for 60 min gave a maximum reducing sugar yield. In this study, sulfuric acid had a greater capacity for hydrolyzing cassava baggasses than phosphoric acid. In comparison, dilute acid hydrolysis to provide a higher yield of reducing sugar than the enzymatic hydrolysis combined hydrothermal pretreatment. However, enzymatic hydrolysis in a combination with hydrothermal pretreatment was an alternative to enhance efficiency reducing sugar production from cassava bagasse.

Keywords: Acid hydrolysis, cassava bagasse, enzymatic hydrolysis, hydrothermal pretreatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2977
753 Leaching of Flotation Concentrate of Oxide Copper Ore from Sepon Mine, Lao PDR

Authors: C. Rattanakawin, S. Vasailor

Abstract:

Acid leaching of flotation concentrate of oxide copper ore containing mainly of malachite was performed in a standard agitation tank with various parameters. The effects of solid to liquid ratio, sulfuric acid concentration, agitation speed, leaching temperature and time were examined to get proper conditions. The best conditions are 1:8 solid to liquid ratio, 10% concentration by weight, 250 rev/min, 30 oC and 5-min leaching time in respect. About 20% Cu grade assayed by atomic absorption technique with 98% copper recovery was obtained from these combined optimum conditions. Dissolution kinetics of the concentrate was approximated as a logarithmic function. As a result, the first-order reaction rate is suggested from this leaching study.

Keywords: Agitation leaching, dissolution kinetics, flotation concentrate, oxide copper ore, sulfuric acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691
752 Monitoring CO2 and H2S Emission in Live Austrian and UK Concrete Sewer Pipes

Authors: Anna Romanova, Morteza A. Alani

Abstract:

Corrosion of concrete sewer pipes induced by sulfuric acid is an acknowledged problem and a ticking time-bomb to sewer operators. Whilst the chemical reaction of the corrosion process is well-understood, the indirect roles of other parameters in the corrosion process which are found in sewer environment are not highly reflected on. This paper reports on a field studies undertaken in Austria and United Kingdom, where the parameters of temperature, pH, H2S and CO2 were monitored over a period of time. The study establishes that (i) effluent temperature and pH have similar daily pattern and peak times, when examined in minutes scale; (ii) H2S and CO2 have an identical hourly pattern; (iii) H2S instant or shifted relation to effluent temperature is governed by the root mean square value of CO2.

Keywords: Concrete corrosion, carbon dioxide, hydrogen sulphide, sewer pipe, sulfuric acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
751 Study of Sugarcane Bagasse Pretreatment with Sulfuric Acid as a Step of Cellulose Obtaining

Authors: Candido. R.G., Godoy, G.G., Gonçalves, A.R

Abstract:

To produce sugar and ethanol, sugarcane processing generates several agricultural residues, being straw and bagasse is considered as the main among them. And what to do with this residues has been subject of many studies and experiences in an industry that, in recent years, highlighted by the ability to transform waste into valuable products such as electric power. Cellulose is the main component of these materials. It is the most common organic polymer and represents about 1.5 x 1012 tons of total production of biomass per year and is considered an almost inexhaustible source of raw material. Pretreatment with mineral acids is one of the most widely used as stage of cellulose extraction from lignocellulosic materials for solubilizing most of the hemicellulose content. This study had as goal to find the best reaction time of sugarcane bagasse pretreatment with sulfuric acid in order to minimize the losses of cellulose concomitantly with the highest possible removal of hemicellulose and lignin. It was found that the best time for this reaction was 40 minutes, in which it was reached a loss of hemicelluloses around 70% and lignin and cellulose, around 15%. Over this time, it was verified that the cellulose loss increased and there was no loss of lignin and hemicellulose.

Keywords: cellulose, acid pretreatment, hemicellulose removal, sugarcane bagasse

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4926
750 Fermentable Sugars from Palm Empty Fruit Bunch Biomass for Bioethanol Production

Authors: U. A. Asli, H. Hamid, Z.A. Zakaria, A. N. Sadikin, R. Rasit

Abstract:

This study investigated the effect of a dilute acid, lime and ammonia aqueous pretreatment on the fermentable sugars conversion from empty fruit bunch (EFB) biomass. The dilute acid treatment was carried out in an autoclave, at 121ºC with 4% of sulfuric acid. In the lime pretreatment, 3 wt % of calcium hydroxide was used, whereas the third method was done by soaking EFB with 28% ammonia solution. The EFB biomass was then subjected to a two-stage-acid hydrolysis process. Subsequently, the hydrolysate was fermented by using instant baker’s yeast to produce bioethanol. The highest glucose yield was 890 mg/g of biomass, obtained from the sample which underwent lime pretreatment. The highest bioethanol yield of 6.1mg/g of glucose was achieved from acid pretreatment. This showed that the acid pretreatment gave the most fermentable sugars compared to the other two pretreatments.

Keywords: Bioethanol, biomass, empty fruit bunch (EFB), fermentable sugars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3747
749 Study on Hydrophilicity of Anodic Aluminum Oxide Templates with TiO2-NTs

Authors: Yu-Wei Chang, Hsuan-Yu Ku, Jo-Shan Chiu, Shao-Fu Chang, Chien-Chon Chen

Abstract:

This paper aims to discuss the hydrophilicity about the anodic aluminum oxide (AAO) template with titania nanotubes (NTs). The AAO templates with pore size diameters of 20-250 nm were generated by anodizing 6061 aluminum alloy substrates in acid solution of sulfuric acid (H2SO4), oxalic acid (COOH)2, and phosphoric acid (H3PO4), respectively. TiO2-NTs were grown on AAO templates by the sol-gel deposition process successfully. The water contact angle on AAO/TiO2-NTs surface was lower compared to the water contact angle on AAO surface. So, the characteristic of hydrophilicity was significantly associated with the AAO pore size and what kinds of materials were immersed variables.

Keywords: Anodic aluminum oxide, nanotube, anodization, Sol-Gel, hydrophilicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1084
748 Bioleaching of Metals Contained in Spent Catalysts by Acidithiobacillus thiooxidans DSM 26636

Authors: Andrea M. Rivas-Castillo, Marlenne Gómez-Ramirez, Isela Rodríguez-Pozos, Norma G. Rojas-Avelizapa

Abstract:

Spent catalysts are considered as hazardous residues of major concern, mainly due to the simultaneous presence of several metals in elevated concentrations. Although hydrometallurgical, pyrometallurgical and chelating agent methods are available to remove and recover some metals contained in spent catalysts; these procedures generate potentially hazardous wastes and the emission of harmful gases. Thus, biotechnological treatments are currently gaining importance to avoid the negative impacts of chemical technologies. To this end, diverse microorganisms have been used to assess the removal of metals from spent catalysts, comprising bacteria, archaea and fungi, whose resistance and metal uptake capabilities differ depending on the microorganism tested. Acidophilic sulfur oxidizing bacteria have been used to investigate the biotreatment and extraction of valuable metals from spent catalysts, namely Acidithiobacillus thiooxidans and Acidithiobacillus ferroxidans, as they present the ability to produce leaching agents such as sulfuric acid and sulfur oxidation intermediates. In the present work, the ability of A. thiooxidans DSM 26636 for the bioleaching of metals contained in five different spent catalysts was assessed by growing the culture in modified Starkey mineral medium (with elemental sulfur at 1%, w/v), and 1% (w/v) pulp density of each residue for up to 21 days at 30 °C and 150 rpm. Sulfur-oxidizing activity was periodically evaluated by determining sulfate concentration in the supernatants according to the NMX-k-436-1977 method. The production of sulfuric acid was assessed in the supernatants as well, by a titration procedure using NaOH 0.5 M with bromothymol blue as acid-base indicator, and by measuring pH using a digital potentiometer. On the other hand, Inductively Coupled Plasma - Optical Emission Spectrometry was used to analyze metal removal from the five different spent catalysts by A. thiooxidans DSM 26636. Results obtained show that, as could be expected, sulfuric acid production is directly related to the diminish of pH, and also to highest metal removal efficiencies. It was observed that Al and Fe are recurrently removed from refinery spent catalysts regardless of their origin and previous usage, although these removals may vary from 9.5 ± 2.2 to 439 ± 3.9 mg/kg for Al, and from 7.13 ± 0.31 to 368.4 ± 47.8 mg/kg for Fe, depending on the spent catalyst proven. Besides, bioleaching of metals like Mg, Ni, and Si was also obtained from automotive spent catalysts, which removals were of up to 66 ± 2.2, 6.2±0.07, and 100±2.4, respectively. Hence, the data presented here exhibit the potential of A. thiooxidans DSM 26636 for the simultaneous bioleaching of metals contained in spent catalysts from diverse provenance.

Keywords: Acidithiobacillus thiooxidans, spent catalysts, bioleaching, metals, sulfuric acid, sulfur-oxidizing activity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1032
747 Effect of Cooling Approaches on Chemical Compositions, Phases, and Acidolysis of Panzhihua Titania Slag

Authors: Bing Song, Kexi Han, Xuewei Lv

Abstract:

Titania slag is a high quality raw material containing titanium in the subsequent process of titanium pigment. The effects of cooling approaches of granulating, water cooling, and air cooling on chemical, phases, and acidolysis of Panzhihua titania slag were investigated. Compared to the original slag which was prepared by the conventional processing route, the results show that the titania slag undergoes oxidation of Ti3+during different cooling ways. The Ti2O3 content is 17.50% in the original slag, but it is 16.55% and 16.84% in water cooled and air-cooled slag, respectively. Especially, the Ti2O3 content in granulated slag is decreased about 27.6%. The content of Fe2O3 in granulated slag is approximately 2.86% also obviously higher than water (<0.5%) or air-cooled slag (<0.5%). Rutile in cooled titania slag was formed because of the oxidation of Ti3+. The rutile phase without a noticeable change in water cooled and air-cooled slag after the titania slag was cooled, but increased significantly in the granulated slag. The rate of sulfuric acid acidolysis of cooled slag is less than the original slag. The rate of acidolysis is 90.61% and 92.46% to the water-cooled slag and air-cooled slag, respectively. However, the rate of acidolysis of the granulated slag is less than that of industry slag about 20%, only 74.72%.

Keywords: Cooling approaches, titania slag, granulating, sulfuric acid acidolysis,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 859
746 Decreasing Environmental Pollution in Superphosphate Production Using Apatite and Phosphorite Mixture

Authors: R. Guliyev

Abstract:

The enhanced need for food items is receiving more importance due to a gradual increase in the world population and, in this scenario, fertilizers play a very important role in agriculture. In this study, the production of the normal superphosphate was investigated with a continuous chamber method by adding potassium chloride to a mixture of Hibin apatite and Kingisepp phosphorite. In the experiments, the following parameters were selected: The concentration of sulfuric acid (54–66% (w/w)), the stoichiometric norm of sulfuric acid (100, 107, 110, 114% (w/w)), the ratio of apatite/phosphorite in the mixture of phosphate (95/5, 90/10, 85/15, 80/20, 75/25, 70/30, 65/35,60/40, 55/45, 50/50 (w/w)), potassium chloride/the mixture of phosphate (1/50, 2/50, 3/50,4/50, 5/50 (w/w)), and the reaction time (2–8 min). It was observed that by adding potassium chloride to a low-grade phosphorite and using it to substitute a fraction of high-grade apatite in the normal superphosphate production not only resulted in a high-quality product but also eliminated the waiting period for the maturation of superphosphate in the storage. The objective of this study was to produce a normal superphosphate fertilizer by using a continuous chamber method in order to accelerate the production process and to reduce the environmental pollution caused by fluoride gases by eliminating the maturation time in the storage.

Keywords: Continuous chamber method, environmental pollution, fluoride gases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902
745 Biodegradation of Lignocellulosic Residues of Water Hyacinth (Eichhornia crassipes) and Response Surface Methodological Approach to Optimize Bioethanol Production Using Fermenting Yeast Pachysolen tannophilus NRRL Y-2460

Authors: A. Manivannan, R. T. Narendhirakannan

Abstract:

The objective of this research was to investigate biodegradation of water hyacinth (Eichhornia crassipes) to produce bioethanol using dilute-acid pretreatment (1% sulfuric acid) results in high hemicellulose decomposition and using yeast (Pachysolen tannophilus) as bioethanol producing strain. A maximum ethanol yield of 1.14g/L with coefficient, 0.24g g-1; productivity, 0.015g l-1h-1 was comparable to predicted value 32.05g/L obtained by Central Composite Design (CCD). Maximum ethanol yield coefficient was comparable to those obtained through enzymatic saccharification and fermentation of acid hydrolysate using fully equipped fermentor. Although maximum ethanol concentration was low in lab scale, the improvement of lignocellulosic ethanol yield is necessary for large scale production.

Keywords: Acid hydrolysis, Biodegradation, Hemicellulose, Pachysolen tannophilus, Water hyacinth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
744 Competitive Adsorption of Heavy Metals onto Natural and Activated Clay: Equilibrium, Kinetics and Modeling

Authors: L. Khalfa, M. Bagane, M. L. Cervera, S. Najjar

Abstract:

The aim of this work is to present a low cost adsorbent for removing toxic heavy metals from aqueous solutions. Therefore, we are interested to investigate the efficiency of natural clay minerals collected from south Tunisia and their modified form using sulfuric acid in the removal of toxic metal ions: Zn(II) and Pb(II) from synthetic waste water solutions. The obtained results indicate that metal uptake is pH-dependent and maximum removal was detected to occur at pH 6. Adsorption equilibrium is very rapid and it was achieved after 90 min for both metal ions studied. The kinetics results show that the pseudo-second-order model describes the adsorption and the intraparticle diffusion models are the limiting step. The treatment of natural clay with sulfuric acid creates more active sites and increases the surface area, so it showed an increase of the adsorbed quantities of lead and zinc in single and binary systems. The competitive adsorption study showed that the uptake of lead was inhibited in the presence of 10 mg/L of zinc. An antagonistic binary adsorption mechanism was observed. These results revealed that clay is an effective natural material for removing lead and zinc in single and binary systems from aqueous solution.

Keywords: Lead, zinc heavy metal, activated clay, kinetic study, competitive adsorption, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
743 Study on Extraction of Niobium Oxide from Columbite–Tantalite Concentrate

Authors: Htet Htike Htwe, Kay Thi Lwin

Abstract:

The principal objective of this study is to be able to extract niobium oxide from columbite-tantalite concentrate of Thayet Kon Area in Nay Phi Taw. It is recovered from columbite-tantalite concentrate which contains 19.29 % Nb2O5.The recovery of niobium oxide from columbite-tantalite concentrate can be divided into three main sections, namely, digestion of the concentrate, recovery from the leached solution and precipitation and calcinations. The concentrate was digested with hydrofluoric acid and sulfuric acid. Of the various parameters that effect acidity and time were studied. In the recovery section solvent extraction process using methyl isobutyl ketone was investigated. Ammonium hydroxide was used as a precipitating agent and the precipitate was later calcined. The percentage of niobium oxide is 74%.

Keywords: Calcination, Digestion, Precipitation, SolventExtraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3533
742 Optimization of Process Parameters for Diesters Biolubricant using D-optimal Design

Authors: Bashar Mudhaffar Abdullah, Jumat Salimon

Abstract:

Optimization study of the diesters biolubricant oleyl 9(12)-hydroxy-10(13)-oleioxy-12(9)-octadecanoate (OLHYOOT) was synthesized in the presence of sulfuric acid (SA) as catalyst has been done. Optimum conditions of the experiment to obtain high yield% of OLHYOOT were predicted at ratio of OL/HYOOA of 1:1 g/g, ratio of SA/HYOOA of 0.20:1 g/g, reaction temperature 110 °C and 4.5 h of reaction time. At this condition, the Yield% of OLHYOOT was 88.7. Disappearance of carboxylic acid (C=O) peak has observed by FTIR with appearance ester (C=O) at 1738 cm-1. 1H NMR spectra analyses confirmed the result of OLHYOOT with appearance ester (-CHOCOR) at 4.05ppm and also the 13C-NMR confirmed the result with appearance ester (C=O) peak at 173.93ppm.

Keywords: Esterification, Diesters, Biolubricant, D-optimaldesign.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
741 Comparison of Microwave-Assisted and Conventional Leaching for Extraction of Copper from Chalcopyrite Concentrate

Authors: Ayfer Kilicarslan, Kubra Onol, Sercan Basit, Muhlis Nezihi Saridede

Abstract:

Chalcopyrite (CuFeS2) is the most common primary mineral used for the commercial production of copper. The low dissolution efficiency of chalcopyrite in sulfate media has prevented an efficient industrial leaching of this mineral in sulfate media. Ferric ions, bacteria, oxygen and other oxidants have been used as oxidizing agents in the leaching of chalcopyrite in sulfate and chloride media under atmospheric or pressure leaching conditions. Two leaching methods were studied to evaluate chalcopyrite (CuFeS2) dissolution in acid media. First, the conventional oxidative acid leaching method was carried out using sulfuric acid (H2SO4) and potassium dichromate (K2Cr2O7) as oxidant at atmospheric pressure. Second, microwave-assisted acid leaching was performed using the microwave accelerated reaction system (MARS) for same reaction media. Parameters affecting the copper extraction such as leaching time, leaching temperature, concentration of H2SO4 and concentration of K2Cr2O7 were investigated. The results of conventional acid leaching experiments were compared to the microwave leaching method. It was found that the copper extraction obtained under high temperature and high concentrations of oxidant with microwave leaching is higher than those obtained conventionally. 81% copper extraction was obtained by the conventional oxidative acid leaching method in 180 min, with the concentration of 0.3 mol/L K2Cr2O7 in 0.5M H2SO4 at 50 ºC, while 93.5% copper extraction was obtained in 60 min with microwave leaching method under same conditions.

Keywords: Extraction, copper, microwave-assisted leaching, chalcopyrite, potassium dichromate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2846
740 The Effect of Simulated Acid Rain on Glycine max

Authors: Nilima Gajbhiye

Abstract:

Acid rain occurs when sulphur dioxide (SO2) and nitrogen oxides (Nox) gases react in the atmosphere with water, oxygen, and other chemicals to form various acidic compounds. The result is a mild solution of sulfuric acid and nitric acid. Soil has a greater buffering capacity than aquatic systems. However excessive amount of acids introduced by acid rains may disturb the entire soil chemistry. Acidity and harmful action of toxic elements damage vegetation while susceptible microbial species are eliminated. In present study, the effects of simulated sulphuric acid and nitric acid rains were investigated on crop Glycine max. The effect of acid rain on change in soil fertility was detected in which pH of control sample was 6.5 and pH of 1%H2SO4 and 1%HNO3 were 3.5. Nitrogen nitrate in soil was high in 1% HNO3 treated soil & Control sample. Ammonium nitrogen in soil was low in 1% HNO3 & H2SO4 treated soil. Ammonium nitrogen was medium in control and other samples. The effect of acid rain on seed germination on 3rd day of germination control sample growth was 7 cm, 0.1% HNO3 was 8cm, and 0.001% HNO3 & 0.001% H2SO4 was 6cm each. On 10th day fungal growth was observed in 1% and 0.1%H2SO4 concentrations, when all plants were dead. The effect of acid rain on crop productivity was investigated on 3rd day roots were developed in plants. On12th day Glycine max showed more growth in 0.1% HNO3, 0.001% HNO3 and 0.001% H2SO4 treated plants growth were same as compare to control plants. On 20th day development of discoloration of plant pigments were observed on acid treated plants leaves. On 38th day, 0.1, 0.001% HNO3 and 0.1, 0.001% H2SO4 treated plants and control plants were showing flower growth. On 42th day, acid treated Glycine max variety and control plants were showed seeds on plants. In Glycine max variety 0.1, 0.001% H2SO4, 0.1, 0.001% HNO3 treated plants were dead on 46th day and fungal growth was observed. The toxicological study was carried out on Glycine max plants exposed to 1% HNO3 cells were damaged more than 1% H2SO4. Leaf sections exposed to 0.001% HNO3 & H2SO4 showed less damaged of cells and pigmentation observed in entire slide when compare with control plant. The soil analysis was done to find microorganisms in HNO3 & H2SO4 treated Glycine max and control plants. No microorganism growth was observed in 1% HNO3 & H2SO4 but control plant showed microbial growth.

Keywords: Acid rain, Glycine max, HNO3 & H2SO4, Pigmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3413
739 Pseudo-Homogeneous Kinetic of Dilute-Acid Hydrolysis of Rice Husk for Ethanol Production: Effect of Sugar Degradation

Authors: Megawati, Wahyudi B. Sediawan, Hary Sulistyo, Muslikhin Hidayat

Abstract:

Rice husk is a lignocellulosic source that can be converted to ethanol. Three hundreds grams of rice husk was mixed with 1 L of 0.18 N sulfuric acid solutions then was heated in an autoclave. The reaction was expected to be at constant temperature (isothermal), but before that temperature was achieved, reaction has occurred. The first liquid sample was taken at temperature of 140 0C and repeated every 5 minute interval. So the data obtained are in the regions of non-isothermal and isothermal. It was observed that the degradation has significant effects on the ethanol production. The kinetic constants can be expressed by Arrhenius equation with the frequency factors for hydrolysis and sugar degradation of 1.58 x 105 1/min and 2.29 x 108 L/mole/min, respectively, while the activation energies are 64,350 J/mole and 76,571 J/mole. The highest ethanol concentration from fermentation is 1.13% v/v, attained at 220 0C.

Keywords: degradation, ethanol, hydrolysis, rice husk

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
738 Pseudo-Homogeneous Kinetic of Dilute-Acid Hydrolysis of Rice Huskfor Ethanol Production: Effect of Sugar Degradation

Authors: Megawati, Wahyudi B. Sediawan, Hary Sulistyo, Muslikhin Hidayat

Abstract:

Rice husk is a lignocellulosic source that can be converted to ethanol. Three hundreds grams of rice husk was mixed with 1 L of 0.18 N sulfuric acid solutions then was heated in an autoclave. The reaction was expected to be at constant temperature (isothermal), but before that temperature was achieved, reaction has occurred. The first liquid sample was taken at temperature of 140 0C and repeated every 5 minute interval. So the data obtained are in the regions of non-isothermal and isothermal. It was observed that the degradation has significant effects on the ethanol production. The kinetic constants can be expressed by Arrhenius equation with the frequency factors for hydrolysis and sugar degradation of 1.58 x 105 min-1 and 2.29 x 108 L/mole-min, respectively, while the activation energies are 64,350 J/mole and 76,571 J/mole. The highest ethanol concentration from fermentation is 1.13% v/v, attained at 220 0C.

Keywords: degradation, ethanol, hydrolysis, rice husk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
737 The Composition of Rice Bran Hydrolysate and Its Possibility to Use in the Ethanol Production by Zymomonas mobilis Biofilm

Authors: Tatsaporn Todhanakasem, Kamonchanok Areerat, Pornthap Thanonkeo, Roungdao KlinjapoandGlenn M. Young

Abstract:

Rice bran has been abandoned as agricultural waste for million tonnes per year in Thailand, therefore they have been proposed to be utilized as a rich carbon source in the production of bioethanol. Many toxic compounds are possibly released during the pretreatment of rice bran prior the fermentation process. This study aims to analyze on the availability of toxic compounds and the amount of glucose obtained from 2 different pretreatments using sulfuric acid and mixed cellulase enzymes (without and with delignification/ activated charcoal). The concentration of furfural, 5- hydroxymethyl furfural (5-HMF), levulinic acid, vanillin, syringaldehyde and4-hydroxybenzaldehyde (4-HB) and the percent acetic acid were found to be 0.0517 ± 0.049 mg/L, 0.032 ± 0.06 mg/L, 21074 ± 1685.62 mg/L, 126.265 ± 6.005 mg/L, 2.89 ± 0.30 mg/L, 0.37 ± 0.031mg/L and 0.72% under the pretreatment process without delignification/ activated charcoal treatment and 384.47 ± 99.02 g/L, 0.068 mg/L, 142107.62 ± 8664.6 mg/L, 0.19 mg/L, 5.43 ± 3.29 mg/L, 4.80 ± 0.76 mg/L and 0.254% under the pretreatment process with delignification/ activated charcoal treatment respectively. The presence of high concentration of acetic acid was found to impede the growth of Zymomonas mobilis strain TISTR 551 despite the present of high concentration of levulinic acid. Z. mobilis strain TISTR 551 was found to produce 8.96 ± 4.06 g/L of ethanol under 4 days fementation period in biofilm stage in which represented 40% theoretical yield.

Keywords: Rice bran, Zymomonas mobilis, biofilm, ethanol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2721
736 Optimization of Pretreatment and Enzymatic Saccharification of Cogon Grass Prior Ethanol Production

Authors: Jhalique Jane R. Fojas, Ernesto J. Del Rosario

Abstract:

The dilute acid pretreatment and enzymatic saccharification of lignocellulosic substrate, cogon grass (Imperata cylindrical, L.) was optimized prior ethanol fermentation using simultaneous saccharification and fermentation (SSF) method. The optimum pretreatment conditions, temperature, sulfuric acid concentration, and reaction time were evaluated by determining the maximum sugar yield at constant enzyme loading. Cogon grass, at 10% w/v substrate loading, has optimum pretreatment conditions of 126°C, 0.6% v/v H2SO4, and 20min reaction time. These pretreatment conditions were used to optimize enzymatic saccharification using different enzyme combinations. The maximum saccharification yield of 36.68mg/mL (71.29% reducing sugar) was obtained using 25FPU/g-cellulose cellulase complex combined with 1.1% w/w of cellobiase, ß-glucosidase, and 0.225% w/w of hemicellulase complex, after 96 hours of saccharification. Using the optimum pretreatment and saccharification conditions, SSF of treated substrates was done at 37°C for 120 hours using industrial yeast strain HBY3, Saccharomyces cerevisiae. The ethanol yield for cogon grass at 4% w/w loading was 9.11g/L with 5.74mg/mL total residual sugar.

Keywords: Acid pretreatment, bioethanol, biomass, cogon grass, fermentation, lignocellylose, SSF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3890
735 Fatty Acid and Amino Acid Composition in Mene maculata in The Sea of Maluku

Authors: Semuel Unwakoly, Reinner Puppela, Maresthy Rumalean, Healthy Kainama

Abstract:

Fish is a kind of food that contains many nutritions, one of those is the long chain of unsaturated fatty acids as omega-3 and omega-6 fatty acids and essential amino acid in enough amount for the necessity of our body. Like pelagic fish that found in the sea of Maluku. This research was done to identify fatty acids and amino acids composition in Moonfish (M. maculata) using transesterification reaction steps and Gas Chromatograph-Mass Spectrophotometer (GC-MS) and High-Performance Liquid Chromatography (HPLC). The result showed that fatty acids composition in Moonfish (M. maculata) contained tridecanoic acid (2.84%); palmitoleic acid (2.65%); palmitic acid (35.24%); oleic acid (6.2%); stearic acid (14.20%); and 5,8,11,14-eicosatetraenoic acid (1.29%) and 12 amino acids composition that consist of 7 essential amino acids, were leucine, isoleucine, valine, phenylalanine, methionine, lysine, and histidine, and also 5 non-essential amino acid, were tyrosine, glycine, alanine, glutamic acid, and arginine.Thus, these fishes can be used by the people to complete the necessity of essential fatty acid and amino acid.

Keywords: Moonfish (M. maculata), fatty acid, amino acid, GC-MS, HPLC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 909
734 Effect of Boric Acid on a-Hydroxy Acids Compounds in Thin Layer Chromatography

Authors: Elham Moniri, Homayon Ahmad Panahi, Ahmad Izadi, Mohamad Mehdi Parvin, Atyeh Rahimi

Abstract:

In this investigation Salicylic acid, Sulfosalicylic acid and Acetyl salicylic acid were chosen as a sample for thin layer chromatography (TLC) on silica gel plates. Bicarbonate buffer at different pH containing different amounts of boric acid was applied as mobile phase. Specific interaction of these substances with boric acid has effect on Rf in thin layer chromatography. Regular and similar trend was observed in variations of Rf for mentioned compounds in TLC by altering of percentages of boric acid in mobile phase in pH range of 8-10. Also effect of organic solvent, mixture of water/ organic solvent and organic solvent containing boric acid as mobile phase was studied.

Keywords: Thin layer chromatography (TLC), Aspirin, Salicylic acid, Sulfosalycylic acid, Boric acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325
733 High Performance Liquid Chromatography Determination of Urinary Hippuric Acid and Benzoic Acid as Indices for Glue Sniffer Urine

Authors: Abdul Rahim Yacob, Mohamad Raizul Zinalibdin

Abstract:

A simple method for the simultaneous determination of hippuric acid and benzoic acid in urine using reversed-phase high performance liquid chromatography was described. Chromatography was performed on a Nova-Pak C18 (3.9 x 150 mm) column with a mobile phase of mixed solution methanol: water: acetic acid (20:80:0.2) and UV detection at 254 nm. The calibration curve was linear within concentration range at 0.125 to 6.0 mg/ml of hippuric acid and benzoic acid. The recovery, accuracy and coefficient variance of hippuric acid were 104.54%, 0.2% and 0.2% respectively and for benzoic acid were 98.48%, 1.25% and 0.60% respectively. The detection limit of this method was 0.01ng/l for hippuric acid and 0.06ng/l for benzoic acid. This method has been applied to the analysis of urine samples from the suspected of toluene abuser or glue sniffer among secondary school students at Johor Bahru.

Keywords: Glue sniffer, High Performance LiquidChromatography, Hippuric Acid, Toluene, Urine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3369
732 A Highly Sensitive Dip Strip for Detection of Phosphate in Water

Authors: Hojat Heidari-Bafroui, Amer Charbaji, Constantine Anagnostopoulos, Mohammad Faghri

Abstract:

Phosphorus is an essential nutrient for plant life which is most frequently found as phosphate in water. Once phosphate is found in abundance in surface water, a series of adverse effects on an ecosystem can be initiated. Therefore, a portable and reliable method is needed to monitor the phosphate concentrations in the field. In this paper, an inexpensive dip strip device with the ascorbic acid/antimony reagent dried on blotting paper along with wet chemistry is developed for the detection of low concentrations of phosphate in water. Ammonium molybdate and sulfuric acid are separately stored in liquid form so as to improve significantly the lifetime of the device and enhance the reproducibility of the device’s performance. The limit of detection and quantification for the optimized device are 0.134 ppm and 0.472 ppm for phosphate in water, respectively. The device’s shelf life, storage conditions, and limit of detection are superior to what has been previously reported for the paper-based phosphate detection devices.

Keywords: Phosphate detection, paper-based device, molybdenum blue method, colorimetric assay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 509
731 Mathematical Simulation of Acid Concentration Effects during Acid Nitric Leaching of Cobalt from a Mixed Cobalt-Copper Oxide

Authors: Ek Ngoy, A F Mulaba-Bafubiandi

Abstract:

Cobalt was acid nitric leached from a mixed cobaltcopper oxide with variable acid concentration. Resulting experimental data were used to analyze effects of increase in acid concentration, based on a shrinking core model of the process. The mathematical simulation demonstrated that the time rate of the dissolution mechanism is an increasing function of acid concentration. It was also shown that the magnitude of the acid concentration effect is time dependent and the increase in acid concentration is more effective at earlier stage of the dissolution than at later stage. The remaining process parameters are comprehensively affected by acid concentration and their interaction is synergetic.

Keywords: Acid effect, Cobalt, Cobalt-copper oxide, Leaching, Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845