Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30121
Study on Hydrophilicity of Anodic Aluminum Oxide Templates with TiO2-NTs

Authors: Yu-Wei Chang, Hsuan-Yu Ku, Jo-Shan Chiu, Shao-Fu Chang, Chien-Chon Chen

Abstract:

This paper aims to discuss the hydrophilicity about the anodic aluminum oxide (AAO) template with titania nanotubes (NTs). The AAO templates with pore size diameters of 20-250 nm were generated by anodizing 6061 aluminum alloy substrates in acid solution of sulfuric acid (H2SO4), oxalic acid (COOH)2, and phosphoric acid (H3PO4), respectively. TiO2-NTs were grown on AAO templates by the sol-gel deposition process successfully. The water contact angle on AAO/TiO2-NTs surface was lower compared to the water contact angle on AAO surface. So, the characteristic of hydrophilicity was significantly associated with the AAO pore size and what kinds of materials were immersed variables.

Keywords: Anodic aluminum oxide, nanotube, anodization, Sol-Gel, hydrophilicity.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1340242

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 477

References:


[1] S. Ramya, S. D. Ruth Nithila, R. P. George, D. Nanda Gopala Krishna, C. Thinaharan, U. Kamachi Mudali, Antibacterial studies on Eu–Ag codoped TiO2 surfaces, Ceramics International, 39, (2013)1695–1705.
[2] O. K. Varghese, G. K. Mor, C. A. Grimes, M. Paulose, N. Mukherjee, A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations, Journal of Nanoscience and Nanotechnology, 4, (2004) 733–737.
[3] M. Raimondo, G. Guarini, C. Zanelli, F. Marani, L. Fossa, M. Dondi, PrintingnanoTiO2 on large-sized building materials: technologies, surface modifications and functional behaviour, Ceramics International, 38, (2012) 4685–4693.
[4] L. Snashall, Lasse Nore´n, Yun Liu, Toru Yamashita, Frank Brink, L. Withers, Phase analysis and microwave dielectric properties of BaO–Nd2O3–5TiO2 composite ceramics using variable sizeTiO2 reagents, Ceramics International,38, (2012) S153–S157.
[5] Z. Tun, J. J. Noel, D. W. Shoesmith, Electrochemical modification of the passive oxide layer on a Ti film observed by in-situ neutron reflectometry, Journal of the Electrochemical Society, 146, (1999) 988-994.
[6] C. C. Chen, S. J. Hsieh, Evaluation of fluorine ion concentration in titanium oxide nanotube (TiO2 NT) anodization process, Journal of the Electrochemical Society,156, (2010) K125–K130.
[7] H. P. Wu, L. L. Li, C. C. Chen, W. G. Diau, AnodicTiO2 nanotube arrays for dye-sensitized solar cells characterized by electrochemical impedance spectroscopy, Ceramics International, 38, (2012) 6253–6266.
[8] C. C. Chen, W. D. Jehng, L. L. Li, W. G. Diau, Enhanced efficiency of dye-sensitized solar cells (DSSC) using anodic titanium oxide (ATO) nanotube arrays, Journal of the Electrochemical Society, 156, (2009) C304–C312.
[9] P. M. Woodward, A. W. Sleight, T. Vogt, Ferroelectric tungsten trioxide, Journal of Solution Chemistry, 131, (1997) 9–17.
[10] Z. Fang, Y. Wang, X. Peng, X. Liu, C. Zhen, Structural and optical properties of ZnO films grown on the AAO templates, Materials Letters, 57, (2003) 4187-4190.
[11] J. P. Tu, C. X. Jiang, S. Y. Guo, L.,P. Zhu, F. M. Fu, X. B. Zhao, Friction and wear properties of aligned film of amorphous carbon nanorods on anodic aluminum oxide template in vacuum, Surface and Coatings Technology, 198, (2005) 464-468.
[12] C. C. Chen, Y. Bisrat, Z. P. Luo, R. E. Schaak, C. G. Chao, D. C. Lagoudas, Fabrication of single-crystal tin nanowires by hydraulic pressure injection, Nanotechnology, 17, (2006) 367-374.
[13] Wen C. Say, Chien Chon Chen, Formation of Tin Whiskers and Spheres on Anodic Aluminum Oxide Template, Japanese Journal of Applied Physics, 46, (2007) 7577-7580.
[14] S. H. Chen, C. C. Chen, Z. P. Luo, C. G. Chao, Fabrication and characterization of eutectic bismuth–tin (Bi–Sn) nanowires, Materials Letter, 63, (2009) 1665-1168.
[15] G. E. Thompson, R. C. Furneaux, G. C. Wood, Electron microscopy of ion beam thinned porous anodic films formed on aluminium, Corrosion Science, 18(5), (1978) 481-498.
[16] G. E. Thompson, G. C. Wood, Porous anodic film formation on aluminum, Nature, 290, (1981) 230 -232.
[17] C. C. Chen, C. L. Chen, Y. S. Lai, Template Assisted Fabrication of Pt–Sn Core–Shell Nanospheres, Materials Chemistry and Physics, 131, (2011) 250-253.