Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32759
The Effect of Simulated Acid Rain on Glycine max

Authors: Nilima Gajbhiye

Abstract:

Acid rain occurs when sulphur dioxide (SO2) and nitrogen oxides (Nox) gases react in the atmosphere with water, oxygen, and other chemicals to form various acidic compounds. The result is a mild solution of sulfuric acid and nitric acid. Soil has a greater buffering capacity than aquatic systems. However excessive amount of acids introduced by acid rains may disturb the entire soil chemistry. Acidity and harmful action of toxic elements damage vegetation while susceptible microbial species are eliminated. In present study, the effects of simulated sulphuric acid and nitric acid rains were investigated on crop Glycine max. The effect of acid rain on change in soil fertility was detected in which pH of control sample was 6.5 and pH of 1%H2SO4 and 1%HNO3 were 3.5. Nitrogen nitrate in soil was high in 1% HNO3 treated soil & Control sample. Ammonium nitrogen in soil was low in 1% HNO3 & H2SO4 treated soil. Ammonium nitrogen was medium in control and other samples. The effect of acid rain on seed germination on 3rd day of germination control sample growth was 7 cm, 0.1% HNO3 was 8cm, and 0.001% HNO3 & 0.001% H2SO4 was 6cm each. On 10th day fungal growth was observed in 1% and 0.1%H2SO4 concentrations, when all plants were dead. The effect of acid rain on crop productivity was investigated on 3rd day roots were developed in plants. On12th day Glycine max showed more growth in 0.1% HNO3, 0.001% HNO3 and 0.001% H2SO4 treated plants growth were same as compare to control plants. On 20th day development of discoloration of plant pigments were observed on acid treated plants leaves. On 38th day, 0.1, 0.001% HNO3 and 0.1, 0.001% H2SO4 treated plants and control plants were showing flower growth. On 42th day, acid treated Glycine max variety and control plants were showed seeds on plants. In Glycine max variety 0.1, 0.001% H2SO4, 0.1, 0.001% HNO3 treated plants were dead on 46th day and fungal growth was observed. The toxicological study was carried out on Glycine max plants exposed to 1% HNO3 cells were damaged more than 1% H2SO4. Leaf sections exposed to 0.001% HNO3 & H2SO4 showed less damaged of cells and pigmentation observed in entire slide when compare with control plant. The soil analysis was done to find microorganisms in HNO3 & H2SO4 treated Glycine max and control plants. No microorganism growth was observed in 1% HNO3 & H2SO4 but control plant showed microbial growth.

Keywords: Acid rain, Glycine max, HNO3 & H2SO4, Pigmentation.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087159

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3363

References:


[1] T.W. Ashenden and S.A.Bell,“The effects of simulated acid rain on the growth of three herbaceous species grown on a range of British soils” Environmental pollution.,vol.48(4),pp295-310. 1987.
[2] T. W. Ashenden, S. A. Bell and C. R. Rafarel. “Responses of white clover to gaseous pollutants and acid mist: implications for setting critical levels and loads,” New Phytol.vol.130,pp. 89-9, 1995.
[3] W.L Banwart R.L Finke,.P.M Porter and.J.J.Hassett, Sensitivity of twenty soybean cultivars to simulated acid rain. Journal of environmental quality (Apr-Jun 1990).
[4] R.J.F Bewley., and G.Stotzky, “Simulated acid rain (H2SO4) and microbial activity in soil” Soil Biology and Biochemistry.,vol.15(4),pp.425-429,1983.
[5] Cai Yan-hui,Jiang Hong-ying,Chen Zhong-yi ‘Effects of Simulated Acid Rain on Sprouting and Early Growth of Alternanthera philoxeroides,an Alien Invasive Plant”Journal of Yangtze University(Natural Science Edition)Agricultural Science Volume 2007-04.
[6] Fan Hou-bao, Huang Yu-zi, Li Yan-yan,Lin De-xi “Effects of Simulated Acid Rain on Seed Germination and Seedling Growth of Cunninghamia lanceolata”Acta Agriculturae Universitis Jiangxiensis 2005-06.
[7] Hou Bao Fan and Yi Hong Wang., “Effects of simulated acid rain on germination, foliar damage, chlorophyll contents and seedling growth of five hardwood species growing in China” Forest Ecology and Management, Vol. 132, issue 2-3, p. 285, July 1, 2000,ISSN: 0378-1127.
[8] N Das., R .Das., G.R Chaudhury. and S. N.Das, “Chemical Composition of Precipitation at Background Level,” Atmospheric Research,vol.95(1),108-113,2010.
[9] JS Jacobson , JJ Troiano, LI Heller , L Osmeloski . “Effect of fertilizer on the growth of radish plants exposed to simulated acidic rain containing different sulfate to nitrate ratios”. Environ Pollut 44(1):71-9, 1987
[10] Jr.,Johnston, Jr., J. W.; D. S Shriner and B. K Takemoto,. “Physiological responses of soybean (Glycine max L. Merr) to simulated acid rain and ambient ozone in the field”Water, Air & Soil Pollution, Vol. 33 (3or 4), p373 Apr1987
[11] Kan Huang .,Guoshun Zhuang ., Chang Xu .,Ying Wang and Aohan Tang ., “The chemistry of the severe acidic precipitation in Shanghai, China” Atmospheric Research.,vol.89(1),pp.149-160,2008.
[12] Yoshihisa Kohno, and Takuya Kobayashi “Effect of simulated acid rain on the yield of soybean”Water, Air, and Soil Pollution, Vol.45, (1-2) pp 173-181. May 1989.
[13] P. M. Porter, W. L. Banwart, E. L. Ziegler, B. L. Vasilas ,J. J. Hassett”” Effects of simulated acid rain on growth parameters and yield components of two soybean cultivars” New Phytologist, Vol 113( 1), pages 77–83, September 1989.
[14] Quan Guo-min ‘Effects of simulated acid rain on seed germination of two leguminous crops’ Guangdong Agricultural Sciences 2009-05.
[15] R.Tsitouridou and Ch Anatolaki “On the wet and dry deposition of ionic species in the vicinity of coal-fired power plants, northwestern Greece,” Atmospheric Research, 83 (1), 93-105 (2007).