Search results for: Experimental Study.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14861

Search results for: Experimental Study.

12011 Improved Feature Extraction Technique for Handling Occlusion in Automatic Facial Expression Recognition

Authors: Khadijat T. Bamigbade, Olufade F. W. Onifade

Abstract:

The field of automatic facial expression analysis has been an active research area in the last two decades. Its vast applicability in various domains has drawn so much attention into developing techniques and dataset that mirror real life scenarios. Many techniques such as Local Binary Patterns and its variants (CLBP, LBP-TOP) and lately, deep learning techniques, have been used for facial expression recognition. However, the problem of occlusion has not been sufficiently handled, making their results not applicable in real life situations. This paper develops a simple, yet highly efficient method tagged Local Binary Pattern-Histogram of Gradient (LBP-HOG) with occlusion detection in face image, using a multi-class SVM for Action Unit and in turn expression recognition. Our method was evaluated on three publicly available datasets which are JAFFE, CK, SFEW. Experimental results showed that our approach performed considerably well when compared with state-of-the-art algorithms and gave insight to occlusion detection as a key step to handling expression in wild.

Keywords: Automatic facial expression analysis, local binary pattern, LBP-HOG, occlusion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782
12010 Combining Fuzzy Logic and Neural Networks in Modeling Landfill Gas Production

Authors: Mohamed Abdallah, Mostafa Warith, Roberto Narbaitz, Emil Petriu, Kevin Kennedy

Abstract:

Heterogeneity of solid waste characteristics as well as the complex processes taking place within the landfill ecosystem motivated the implementation of soft computing methodologies such as artificial neural networks (ANN), fuzzy logic (FL), and their combination. The present work uses a hybrid ANN-FL model that employs knowledge-based FL to describe the process qualitatively and implements the learning algorithm of ANN to optimize model parameters. The model was developed to simulate and predict the landfill gas production at a given time based on operational parameters. The experimental data used were compiled from lab-scale experiment that involved various operating scenarios. The developed model was validated and statistically analyzed using F-test, linear regression between actual and predicted data, and mean squared error measures. Overall, the simulated landfill gas production rates demonstrated reasonable agreement with actual data. The discussion focused on the effect of the size of training datasets and number of training epochs.

Keywords: Adaptive neural fuzzy inference system (ANFIS), gas production, landfill

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415
12009 Contributions to Design of Systems Actuated by Shape Memory Active Elements

Authors: Daniel Amariei, Calin O. Miclosina, Ion Vela, Marius Tufoi, Cornel Mituletu

Abstract:

Even it has been recognized that Shape Memory Alloys (SMA) have a significant potential for deployment actuators, the number of applications of SMA-based actuators to the present day is still quite small, due to the need of deep understanding of the thermo-mechanical behavior of SMA, causing an important need for a mathematical model able to describe all thermo-mechanical properties of SMA by relatively simple final set of constitutive equations. SMAs offer attractive potentials such as: reversible strains of several percent, generation of high recovery stresses and high power / weight ratios. The paper tries to provide an overview of the shape memory functions and a presentation of the designed and developed temperature control system used for a gripper actuated by two pairs of differential SMA active springs. An experimental setup was established, using electrical energy for actuator-s springs heating process. As for holding the temperature of the SMA springs at certain level for a long time was developed a control system in order to avoid the active elements overheating.

Keywords: active element, actuator, model, Nitinol, prehension

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
12008 Waste to Biofuel by Torrefaction Technology

Authors: Jyh-Cherng Chen, Yu-Zen Lin, Wei-Zhi Chen

Abstract:

Torrefaction is one of waste to energy (WTE) technologies developing in Taiwan recently, which can reduce the moisture and impuritiesand increase the energy density of biowaste effectively.To understand the torrefaction characteristics of different biowaste and the influences of different torrefaction conditions, four typical biowaste were selected to carry out the torrefaction experiments. The physical and chemical properties of different biowaste prior to and after torrefaction were analyzed and compared. Experimental results show that the contents of elemental carbon and caloric value of the four biowaste were significantly increased after torrefaction. The increase of combustible and caloric value in bamboo was the greatest among the four biowaste. The caloric value of bamboo can be increased from 1526 kcal/kg to 6104 kcal/kg after 300oC and 1 hour torrefaction. The caloric valueof torrefied bamboo was almost four times as the original. The increase of elemental carbon content in wood was the greatest (from 41.03% to 75.24%), and the next was bamboo (from 47.07% to 74.63%). The major parameters which affected the caloric value of torrefied biowaste followed the sequence of biowaste kinds, torrefaction time, and torrefaction temperature. The optimal torrefaction conditions of the experiments were bamboo torrefied at 300oC for 3 hours, and the corresponding caloric value of torrefied bamboo was 5953 kcal/kg. This caloric value is similar to that of brown coal or bituminous coal.

Keywords: Torrefaction, waste to energy, calorie, biofuel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
12007 Mixed Convection Heat Transfer of Copper Oxide-Heat Transfer Oil Nanofluid in Vertical Tube

Authors: Farhad Hekmatipour, M. A. Akhavan-Behabadi, Farzad Hekmatipour

Abstract:

In this paper, experiments were conducted to investigate the heat transfer of Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid laminar flow in vertical smooth and microfin tubes as the surface temperature is constant. The effect of adding the nanoparticle to base fluid and Richardson number on the heat transfer enhancement is investigated as Richardson number increases from 0.1 to 0.7. The experimental results demonstrate that the combined forced-natural convection heat transfer rate may be improved significantly with an increment of mass nanoparticle concentration from 0% to 1.5%. In this experiment, a correlation is also proposed to predict the mixed convection heat transfer rate of CuO-HTO nanofluid flow. The maximum deviation of both correlations is less than 14%. Moreover, a correlation is presented to estimate the Nusselt number inside vertical smooth and microfin tubes as Rayleigh number is between 2´105 and 6.8´106 with the maximum deviation of 12%.

Keywords: Nanofluid, heat transfer oil, mixed convection, vertical tube, laminar flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
12006 On the Reduction of Side Effects in Tomography

Authors: V. Masilamani, C. Vanniarajan, Kamala Krithivasan

Abstract:

As the Computed Tomography(CT) requires normally hundreds of projections to reconstruct the image, patients are exposed to more X-ray energy, which may cause side effects such as cancer. Even when the variability of the particles in the object is very less, Computed Tomography requires many projections for good quality reconstruction. In this paper, less variability of the particles in an object has been exploited to obtain good quality reconstruction. Though the reconstructed image and the original image have same projections, in general, they need not be the same. In addition to projections, if a priori information about the image is known, it is possible to obtain good quality reconstructed image. In this paper, it has been shown by experimental results why conventional algorithms fail to reconstruct from a few projections, and an efficient polynomial time algorithm has been given to reconstruct a bi-level image from its projections along row and column, and a known sub image of unknown image with smoothness constraints by reducing the reconstruction problem to integral max flow problem. This paper also discusses the necessary and sufficient conditions for uniqueness and extension of 2D-bi-level image reconstruction to 3D-bi-level image reconstruction.

Keywords: Discrete Tomography, Image Reconstruction, Projection, Computed Tomography, Integral Max Flow Problem, Smooth Binary Image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
12005 Motor Imaginary Signal Classification Using Adaptive Recursive Bandpass Filter and Adaptive Autoregressive Models for Brain Machine Interface Designs

Authors: Vickneswaran Jeyabalan, Andrews Samraj, Loo Chu Kiong

Abstract:

The noteworthy point in the advancement of Brain Machine Interface (BMI) research is the ability to accurately extract features of the brain signals and to classify them into targeted control action with the easiest procedures since the expected beneficiaries are of disabled. In this paper, a new feature extraction method using the combination of adaptive band pass filters and adaptive autoregressive (AAR) modelling is proposed and applied to the classification of right and left motor imagery signals extracted from the brain. The introduction of the adaptive bandpass filter improves the characterization process of the autocorrelation functions of the AAR models, as it enhances and strengthens the EEG signal, which is noisy and stochastic in nature. The experimental results on the Graz BCI data set have shown that by implementing the proposed feature extraction method, a LDA and SVM classifier outperforms other AAR approaches of the BCI 2003 competition in terms of the mutual information, the competition criterion, or misclassification rate.

Keywords: Adaptive autoregressive, adaptive bandpass filter, brain machine Interface, EEG, motor imaginary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2901
12004 Optimization of Two-Stage Pretreatment Combined with Microwave Radiation Using Response Surface Methodology

Authors: Jidapa Manaso, Apanee Luengnaruemitchai, Sujitra Wongkasemjit

Abstract:

Pretreatment is an essential step in the conversion of lignocellulosic biomass to fermentable sugar that used for biobutanol production. Among pretreatment processes, microwave is considered to improve pretreatment efficiency due to its high heating efficiency, easy operation, and easily to combine with chemical reaction. The main objectives of this work are to investigate the feasibility of microwave pretreatment to enhance enzymatic hydrolysis of corncobs and to determine the optimal conditions using response surface methodology. Corncobs were pretreated via two-stage pretreatment in dilute sodium hydroxide (2 %) followed by dilute sulfuric acid 1 %. Pretreated corncobs were subjected to enzymatic hydrolysis to produce reducing sugar. Statistical experimental design was used to optimize pretreatment parameters including temperature, residence time and solid-to-liquid ratio to achieve the highest amount of glucose. The results revealed that solid-to-liquid ratio and temperature had a significant effect on the amount of glucose.

Keywords: Corncobs, Microwave radiation, Pretreatment, Response Surface Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552
12003 Possibilistic Clustering Technique-Based Traffic Light Control for Handling Emergency Vehicle

Authors: F. Titouna, S. Benferhat, K. Aksa, C. Titouna

Abstract:

A traffic light gives security from traffic congestion,reducing the traffic jam, and organizing the traffic flow. Furthermore,increasing congestion level in public road networks is a growingproblem in many countries. Using Intelligent Transportation Systemsto provide emergency vehicles a green light at intersections canreduce driver confusion, reduce conflicts, and improve emergencyresponse times. Nowadays, the technology of wireless sensornetworks can solve many problems and can offer a good managementof the crossroad. In this paper, we develop a new approach based onthe technique of clustering and the graphical possibilistic fusionmodeling. So, the proposed model is elaborated in three phases. Thefirst one consists to decompose the environment into clusters,following by the fusion intra and inter clusters processes. Finally, wewill show some experimental results by simulation that proves theefficiency of our proposed approach.KeywordsTraffic light, Wireless sensor network, Controller,Possibilistic network/Bayesain network.

Keywords: Traffic light, Wireless sensor network, Controller, Possibilistic network/Bayesain network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
12002 Power Reduction by Automatic Monitoring and Control System in Active Mode

Authors: Somaye Abdollahi Pour, Mohsen Saneei

Abstract:

This paper describes a novel monitoring scheme to minimize total active power in digital circuits depend on the demand frequency, by adjusting automatically both supply voltage and threshold voltages based on circuit operating conditions such as temperature, process variations, and desirable frequency. The delay monitoring results, will be control and apply so as to be maintained at the minimum value at which the chip is able to operate for a given clock frequency. Design details of power monitor are examined using simulation framework in 32nm BTPM model CMOS process. Experimental results show the overhead of proposed circuit in terms of its power consumption is about 40 μW for 32nm technology; moreover the results show that our proposed circuit design is not far sensitive to the temperature variations and also process variations. Besides, uses the simple blocks which offer good sensitivity, high speed, the continuously feedback loop. This design provides up to 40% reduction in power consumption in active mode.

Keywords: active mode, delay monitor, body biasing, VDD scaling, low power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
12001 Understanding Cultural Influences: Principles for Personalized E-learning Systems

Authors: R. Boondao, A. J. Hurst, J. I. Sheard

Abstract:

In the globalized e-learning environment, students coming from different cultures and countries have different characteristics and require different support designed for their approaches to study and learning styles. This paper explores the ways in which cultural background influences students- approaches to study and learning styles. Participants in the study consisted of 131 eastern students and 54 western students from an Australian university. The students were tested using the Study Process Questionnaire (SPQ) for assessing their approaches to study and the Index of Learning Styles Questionnaire (ILS) for assessing their learning styles. The results of the study led to a set of principles being proposed to guide personalization of e-learning system design on the basis of cultural differences.

Keywords: Approaches to study, Cultural influences, Learningstyles, Personalization, e-learning system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
12000 Non-Destructive Evaluation of 2-Mercapto Substituted Pyrimidine Derivatives in Different Concentration and Different Percentages in Dioxane-Water Mixture

Authors: Pravin S. Bodke, Shradha S. Binani, Ravi V. Joat

Abstract:

Science and technology of ultrasonic is widely used in recent years for industrial and medicinal application. The acoustical properties of 2-mercapto substituted pyrimidines viz.,2- Mercapto-4- (2’,4’ –dichloro phenyl) – 6-(2’ – hydroxyl -4’ –methyl-5’ – chlorophenyl) pyrimidine and 2 –Mercapto – 4-(4’ –chloro phenyl) – 6-(2’ – hydroxyl -4’ –methyl-5’ –chlorophenyl) pyrimidine have been investigated from the ultrasonic velocity and density measurements at different concentration and different % in dioxane-water mixture at 305K. The adiabatic compressibility (βs), acoustic impedance (Z), intermolecular free length (Lf), apparent molar volume(ϕv) and relative association (RA) values have been calculated from the experimental data of velocity and density measurement at concentration range of 0.01- 0.000625 mol/lit and 70%,75% and 80% dioxane water mixture. These above parameters are used to discuss the structural and molecular interactions.

Keywords: Acoustical parameters, Density, Dioxane-water mixture, Ultrasonic velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
11999 Mutation Rate for Evolvable Hardware

Authors: Emanuele Stomeo, Tatiana Kalganova, Cyrille Lambert

Abstract:

Evolvable hardware (EHW) refers to a selfreconfiguration hardware design, where the configuration is under the control of an evolutionary algorithm (EA). A lot of research has been done in this area several different EA have been introduced. Every time a specific EA is chosen for solving a particular problem, all its components, such as population size, initialization, selection mechanism, mutation rate, and genetic operators, should be selected in order to achieve the best results. In the last three decade a lot of research has been carried out in order to identify the best parameters for the EA-s components for different “test-problems". However different researchers propose different solutions. In this paper the behaviour of mutation rate on (1+λ) evolution strategy (ES) for designing logic circuits, which has not been done before, has been deeply analyzed. The mutation rate for an EHW system modifies values of the logic cell inputs, the cell type (for example from AND to NOR) and the circuit output. The behaviour of the mutation has been analyzed based on the number of generations, genotype redundancy and number of logic gates used for the evolved circuits. The experimental results found provide the behaviour of the mutation rate to be used during evolution for the design and optimization of logic circuits. The researches on the best mutation rate during the last 40 years are also summarized.

Keywords: Evolvable hardware, mutation rate, evolutionarycomputation, design of logic circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
11998 HEXAFLY-INT Project: Design of a High Speed Flight Experiment

Authors: S. Di Benedetto, M. P. Di Donato, A. Rispoli, S. Cardone, J. Riehmer, J. Steelant, L. Vecchione

Abstract:

Thanks to a coordinated funding by the European Space Agency (ESA) and the European Commission (EC) within the 7th framework program, the High-Speed Experimental Fly Vehicles – International (HEXAFLY-INT) project is aimed at the flight validation of hypersonics technologies enabling future trans-atmospheric flights. The project, which is currently involving partners from Europe, Russian Federation and Australia operating under ESA/ESTEC coordination, will achieve the goal of designing, manufacturing, assembling and flight testing an unpowered high speed vehicle in a glider configuration by 2018. The main technical challenges of the project are specifically related to the design of the vehicle gliding configuration and to the complexity of integrating breakthrough technologies with standard aeronautical technologies, e.g. high temperature protection system and airframe cold structures. Also, the sonic boom impact, which is one of the environmental challenges of the high speed flight, will be assessed. This paper provides a comprehensive and detailed update on all the current projects activities carried out to date on both the vehicle and mission design.

Keywords: Design, flight testing, hypersonics, integration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2315
11997 Contrast Enhancement in Digital Images Using an Adaptive Unsharp Masking Method

Authors: Z. Mortezaie, H. Hassanpour, S. Asadi Amiri

Abstract:

Captured images may suffer from Gaussian blur due to poor lens focus or camera motion. Unsharp masking is a simple and effective technique to boost the image contrast and to improve digital images suffering from Gaussian blur. The technique is based on sharpening object edges by appending the scaled high-frequency components of the image to the original. The quality of the enhanced image is highly dependent on the characteristics of both the high-frequency components and the scaling/gain factor. Since the quality of an image may not be the same throughout, we propose an adaptive unsharp masking method in this paper. In this method, the gain factor is computed, considering the gradient variations, for individual pixels of the image. Subjective and objective image quality assessments are used to compare the performance of the proposed method both with the classic and the recently developed unsharp masking methods. The experimental results show that the proposed method has a better performance in comparison to the other existing methods.

Keywords: Unsharp masking, blur image, sub-region gradient, image enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
11996 A Text Clustering System based on k-means Type Subspace Clustering and Ontology

Authors: Liping Jing, Michael K. Ng, Xinhua Yang, Joshua Zhexue Huang

Abstract:

This paper presents a text clustering system developed based on a k-means type subspace clustering algorithm to cluster large, high dimensional and sparse text data. In this algorithm, a new step is added in the k-means clustering process to automatically calculate the weights of keywords in each cluster so that the important words of a cluster can be identified by the weight values. For understanding and interpretation of clustering results, a few keywords that can best represent the semantic topic are extracted from each cluster. Two methods are used to extract the representative words. The candidate words are first selected according to their weights calculated by our new algorithm. Then, the candidates are fed to the WordNet to identify the set of noun words and consolidate the synonymy and hyponymy words. Experimental results have shown that the clustering algorithm is superior to the other subspace clustering algorithms, such as PROCLUS and HARP and kmeans type algorithm, e.g., Bisecting-KMeans. Furthermore, the word extraction method is effective in selection of the words to represent the topics of the clusters.

Keywords: Subspace Clustering, Text Mining, Feature Weighting, Cluster Interpretation, Ontology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2462
11995 Optimal Control Strategy for High Performance EV Interior Permanent Magnet Synchronous Motor

Authors: Mehdi Karbalaye Zadeh, Ehsan M. Siavashi

Abstract:

The controllable electrical loss which consists of the copper loss and iron loss can be minimized by the optimal control of the armature current vector. The control algorithm of current vector minimizing the electrical loss is proposed and the optimal current vector can be decided according to the operating speed and the load conditions. The proposed control algorithm is applied to the experimental PM motor drive system and this paper presents a modern approach of speed control for permanent magnet synchronous motor (PMSM) applied for Electric Vehicle using a nonlinear control. The regulation algorithms are based on the feedback linearization technique. The direct component of the current is controlled to be zero which insures the maximum torque operation. The near unity power factor operation is also achieved. More over, among EV-s motor electric propulsion features, the energy efficiency is a basic characteristic that is influenced by vehicle dynamics and system architecture. For this reason, the EV dynamics are taken into account.

Keywords: PMSM, Electric Vehicle, Optimal control, Traction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
11994 An Innovative Green Cooling Approach Using Peltier Chip in Milling Operation for Surface Roughness Improvement

Authors: Md. Anayet U. Patwari, Mohammad Ahsan Habib, Md. Tanzib Ehsan, Md Golam Ahnaf, Md. S. I. Chowdhury

Abstract:

Surface roughness is one of the key quality parameters of the finished product. During any machining operation, high temperatures are generated at the tool-chip interface impairing surface quality and dimensional accuracy of products. Cutting fluids are generally applied during machining to reduce temperature at the tool-chip interface. However, usages of cutting fluids give rise to problems such as waste disposal, pollution, high cost, and human health hazard. Researchers, now-a-days, are opting towards dry machining and other cooling techniques to minimize use of coolants during machining while keeping surface roughness of products within desirable limits. In this paper, a concept of using peltier cooling effects during aluminium milling operation has been presented and adopted with an aim to improve surface roughness of the machined surface. Experimental evidence shows that peltier cooling effect provides better surface roughness of the machined surface compared to dry machining.

Keywords: Aluminium, surface roughness, Peltier cooling effect, milling operation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 952
11993 Dimension Reduction of Microarray Data Based on Local Principal Component

Authors: Ali Anaissi, Paul J. Kennedy, Madhu Goyal

Abstract:

Analysis and visualization of microarraydata is veryassistantfor biologists and clinicians in the field of diagnosis and treatment of patients. It allows Clinicians to better understand the structure of microarray and facilitates understanding gene expression in cells. However, microarray dataset is a complex data set and has thousands of features and a very small number of observations. This very high dimensional data set often contains some noise, non-useful information and a small number of relevant features for disease or genotype. This paper proposes a non-linear dimensionality reduction algorithm Local Principal Component (LPC) which aims to maps high dimensional data to a lower dimensional space. The reduced data represents the most important variables underlying the original data. Experimental results and comparisons are presented to show the quality of the proposed algorithm. Moreover, experiments also show how this algorithm reduces high dimensional data whilst preserving the neighbourhoods of the points in the low dimensional space as in the high dimensional space.

Keywords: Linear Dimension Reduction, Non-Linear Dimension Reduction, Principal Component Analysis, Biologists.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
11992 An Experimental Investigation on the Droplet Behavior Impacting a Hot Surface above the Leidenfrost Temperature

Authors: Khaleel Sami Hamdan, Dong-Eok Kim, Sang-Ki Moon

Abstract:

An appropriate model to predict the size of the droplets resulting from the break-up with the structures will help in a better understanding and modeling of the two-phase flow calculations in the simulation of a reactor core loss-of-coolant accident (LOCA). A droplet behavior impacting on a hot surface above the Leidenfrost temperature was investigated. Droplets of known size and velocity were impacted to an inclined plate of hot temperature, and the behavior of the droplets was observed by a high-speed camera. It was found that for droplets of Weber number higher than a certain value, the higher the Weber number of the droplet the smaller the secondary droplets. The COBRA-TF model over-predicted the measured secondary droplet sizes obtained by the present experiment. A simple model for the secondary droplet size was proposed using the mass conservation equation. The maximum spreading diameter of the droplets was also compared to previous correlations and a fairly good agreement was found. A better prediction of the heat transfer in the case of LOCA can be obtained with the presented model.

Keywords: Break-up, droplet, impact, inclined hot plate, Leidenfrost temperature, LOCA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2371
11991 Sequential Straightforward Clustering for Local Image Block Matching

Authors: Mohammad Akbarpour Sekeh, Mohd. Aizaini Maarof, Mohd. Foad Rohani, Malihe Motiei

Abstract:

Duplicated region detection is a technical method to expose copy-paste forgeries on digital images. Copy-paste is one of the common types of forgeries to clone portion of an image in order to conceal or duplicate special object. In this type of forgery detection, extracting robust block feature and also high time complexity of matching step are two main open problems. This paper concentrates on computational time and proposes a local block matching algorithm based on block clustering to enhance time complexity. Time complexity of the proposed algorithm is formulated and effects of two parameter, block size and number of cluster, on efficiency of this algorithm are considered. The experimental results and mathematical analysis demonstrate this algorithm is more costeffective than lexicographically algorithms in time complexity issue when the image is complex.

Keywords: Copy-paste forgery detection, Duplicated region, Timecomplexity, Local block matching, Sequential block clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
11990 Some Issues on Integrating Telepresence Technology into Industrial Robotic Assembly

Authors: Gunther Reinhart, Marwan Radi

Abstract:

Since the 1940s, many promising telepresence research results have been obtained. However, telepresence technology still has not reached industrial usage. As human intelligence is necessary for successful execution of most manual assembly tasks, the ability of the human is hindered in some cases, such as the assembly of heavy parts of small/medium lots or prototypes. In such a case of manual assembly, the help of industrial robots is mandatory. The telepresence technology can be considered as a solution for performing assembly tasks, where the human intelligence and haptic sense are needed to identify and minimize the errors during an assembly process and a robot is needed to carry heavy parts. In this paper, preliminary steps to integrate the telepresence technology into industrial robot systems are introduced. The system described here combines both, the human haptic sense and the industrial robot capability to perform a manual assembly task remotely using a force feedback joystick. Mapping between the joystick-s Degrees of Freedom (DOF) and the robot-s ones are introduced. Simulation and experimental results are shown and future work is discussed.

Keywords: Assembly, Force Feedback, Industrial Robot, Teleassembly, Telepresence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244
11989 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation

Authors: Hamed Alqahtani, Manolya Kavakli-Thorne

Abstract:

The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.

Keywords: Video surveillance, disentanglement, face detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 607
11988 Detached-Eddy Simulation of Vortex Generator Jet Using Chimera Grids

Authors: Saqib Mahmood, Rolf Radespiel

Abstract:

This paper aims at numerically analysing the effect of an active flow control (AFC) by a vortex generator jet (VGJ) submerged in a boundary layer via Chimera Grids and Detached- Eddy Simulation (DES). The performance of DES results are judged against Reynolds-Averaged Navier-Stokes (RANS) and compared with the experiments that showed an unsteady vortex motion downstream of VGJ. Experimental results showed that the mechanism of embedding logitudinal vortex structure in the main stream flow is quite effective in increasing the near wall momentum of separated aircraft wing. In order to simulate such a flow configuration together with the VGJ, an efficient numerical approach is required. This requirement is fulfilled by performing the DES simulation over the flat plate using the DLR TAU Code. The DES predictions identify the vortex region via smooth hybrid length scale and predict the unsteady vortex motion observed in the experiments. The DES results also showed that the sufficient grid refinement in the vortex region resolves the turbulent scales downstream of the VGJ, the spatial vortex core postion and nondimensional momentum coefficient RVx .

Keywords: VGJ, Chimera Grid, DES, RANS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481
11987 Thermohydraulic Performance of Double Flow Solar Air Heater with Corrugated Absorber

Authors: S. P. Sharma, Som Nath Saha

Abstract:

This paper deals with the analytical investigation of thermal and thermohydraulic performance of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater has been presented, and a computer program in C++ language is developed to estimate the outlet temperature of air for the evaluation of thermal and thermohydraulic efficiency by solving the governing equations numerically using relevant correlations for heat transfer coefficients. The results obtained from the mathematical model is compared with the available experimental results and it is found to be reasonably good. The results show that the double flow solar air heaters have higher efficiency than conventional solar air heater, although the double flow corrugated absorber is superior to that of flat plate double flow solar air heater. It is also observed that the thermal efficiency increases with increase in mass flow rate; however, thermohydraulic efficiency increases with increase in mass flow rate up to a certain limit, attains the maximum value, then thereafter decreases sharply.

Keywords: Corrugated absorber, double flow, solar air heater, thermohydraulic efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502
11986 A Comparison of SVM-based Criteria in Evolutionary Method for Gene Selection and Classification of Microarray Data

Authors: Rameswar Debnath, Haruhisa Takahashi

Abstract:

An evolutionary method whose selection and recombination operations are based on generalization error-bounds of support vector machine (SVM) can select a subset of potentially informative genes for SVM classifier very efficiently [7]. In this paper, we will use the derivative of error-bound (first-order criteria) to select and recombine gene features in the evolutionary process, and compare the performance of the derivative of error-bound with the error-bound itself (zero-order) in the evolutionary process. We also investigate several error-bounds and their derivatives to compare the performance, and find the best criteria for gene selection and classification. We use 7 cancer-related human gene expression datasets to evaluate the performance of the zero-order and first-order criteria of error-bounds. Though both criteria have the same strategy in theoretically, experimental results demonstrate the best criterion for microarray gene expression data.

Keywords: support vector machine, generalization error-bound, feature selection, evolutionary algorithm, microarray data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
11985 An Image Segmentation Algorithm for Gradient Target Based on Mean-Shift and Dictionary Learning

Authors: Yanwen Li, Shuguo Xie

Abstract:

In electromagnetic imaging, because of the diffraction limited system, the pixel values could change slowly near the edge of the image targets and they also change with the location in the same target. Using traditional digital image segmentation methods to segment electromagnetic gradient images could result in lots of errors because of this change in pixel values. To address this issue, this paper proposes a novel image segmentation and extraction algorithm based on Mean-Shift and dictionary learning. Firstly, the preliminary segmentation results from adaptive bandwidth Mean-Shift algorithm are expanded, merged and extracted. Then the overlap rate of the extracted image block is detected before determining a segmentation region with a single complete target. Last, the gradient edge of the extracted targets is recovered and reconstructed by using a dictionary-learning algorithm, while the final segmentation results are obtained which are very close to the gradient target in the original image. Both the experimental results and the simulated results show that the segmentation results are very accurate. The Dice coefficients are improved by 70% to 80% compared with the Mean-Shift only method.

Keywords: Gradient image, segmentation and extract, mean-shift algorithm, dictionary learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970
11984 Performance Improvement in the Bivariate Models by using Modified Marginal Variance of Noisy Observations for Image-Denoising Applications

Authors: R. Senthilkumar

Abstract:

Most simple nonlinear thresholding rules for wavelet- based denoising assume that the wavelet coefficients are independent. However, wavelet coefficients of natural images have significant dependencies. This paper attempts to give a recipe for selecting one of the popular image-denoising algorithms based on VisuShrink, SureShrink, OracleShrink, BayesShrink and BiShrink and also this paper compares different Bivariate models used for image denoising applications. The first part of the paper compares different Shrinkage functions used for image-denoising. The second part of the paper compares different bivariate models and the third part of this paper uses the Bivariate model with modified marginal variance which is based on Laplacian assumption. This paper gives an experimental comparison on six 512x512 commonly used images, Lenna, Barbara, Goldhill, Clown, Boat and Stonehenge. The following noise powers 25dB,26dB, 27dB, 28dB and 29dB are added to the six standard images and the corresponding Peak Signal to Noise Ratio (PSNR) values are calculated for each noise level.

Keywords: BiShrink, Image-Denoising, PSNR, Shrinkage function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347
11983 Reconfigurable Circularly Polarized Compact Short Backfire Antenna

Authors: M. Javid Asad, M. Zafrullah, Mian Shahzad Iqbal

Abstract:

In this research paper, a slotted coaxial line fed cross dipole excitation structure for short backfire antenna is proposed and developed to achieve reconfigurable circular polarization. The cross dipole, which is fed by the slotted coaxial line, consists of two orthogonal dipoles. The dipoles are mounted on the outer conductor of the coaxial line. A unique technique is developed to generate reconfigurable circular polarization using cross dipole configuration. The sub-reflector is supported by the feed line, thus requiring no extra support. The antenna is developed on elliptical ground plane with dielectric rim making antenna compact. It is demonstrated that cross dipole excited short backfire antenna can achieve voltage standing wave ratio (VSWR) bandwidth of 14.28% for 2:1 VSWR, axial ratio of 0.2 dB with axial ratio (≤ 3dB) bandwidth of 2.14% and a gain of more than 12 dBi. The experimental results for the designed antenna structure are in close agreement with computer simulations.

Keywords: Circularly polarized, compact, short backfireantenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162
11982 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters

Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar

Abstract:

Several meteorological parameters were used for the  prediction of monthly average daily global solar radiation on  horizontal using recurrent neural networks (RNNs). Climatological  data and measures, mainly air temperature, humidity, sunshine  duration, and wind speed between 1995 and 2007 were used to design  and validate a feed forward and recurrent neural network based  prediction systems. In this paper we present our reference system  based on a feed-forward multilayer perceptron (MLP) as well as the  proposed approach based on an RNN model. The obtained results  were promising and comparable to those obtained by other existing  empirical and neural models. The experimental results showed the  advantage of RNNs over simple MLPs when we deal with time series  solar radiation predictions based on daily climatological data.

Keywords: Recurrent Neural Networks, Global Solar Radiation, Multi-layer perceptron, gradient, Root Mean Square Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561