
 
 
 
 
 
 
 
 
 
 
                                  

 
Abstract— Most simple nonlinear thresholding rules for 

wavelet- based denoising assume that the wavelet coefficients are 
independent. However, wavelet coefficients of natural images 
have significant dependencies. This paper attempts to give a recipe 
for selecting one of the popular image-denoising algorithms based 
on VisuShrink, SureShrink, OracleShrink, BayesShrink and 
BiShrink and also this paper compares different Bivariate models 
used for image denoising applications. The first part of the paper 
compares different Shrinkage functions used for image-denoising. 
The second part of the paper compares different bivariate models 
and the third part of this paper uses the Bivariate model with 
modified marginal variance which is based on Laplacian 
assumption. This paper gives an experimental comparison on six 
512x512 commonly used images, Lenna, Barbara, Goldhill, 
Clown, Boat and Stonehenge. The following noise powers 25dB, 
26dB, 27dB, 28dB and 29dB are added to the six standard images 
and the corresponding Peak Signal to Noise Ratio (PSNR) values 
are calculated for each noise level. 
 

Keywords—BiShrink, Image-Denoising, PSNR, Shrinkage 
function. 

I. INTRODUCTION 

N image is corrupted by noise in its acquisition or 
transmission. The goal of denoising is to remove the 

noise while retaining as much as possible the important 
signal features. Traditionally, this is achieved by linear 
processing but for the past few years image- denoising has 
been done using nonlinear techniques. A simple denoising 
algorithm that uses the wavelet transform consist of the 
following three steps, 
 (1)Calculate the wavelet transform of the noisy                     
       signal 
 (2) Modify the noisy wavelet coefficients according               
    to some rule. 
 (3) Compute the inverse transform using the modified        
       coefficients.   

One of the most well-known rules for the second step is 
soft thresholding analyzed by Donoho [1, 2]. Due to its 
effectiveness and simplicity, it is frequently used in the 
literature. The main idea is to subtract threshold value ‘T’ 
from all coefficients larger than ‘T’ and to set all other 
coeffi- 
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cients to zero. Alternative approaches can be found in, for 
example, [2],[3],[4] and [5]. VisuShrink[1] uses one of the 
well-known thresholding rules: the Universal threshold. In 
addition, subband adaptive systems have superior 
performance, such as SureShrink[3], which is a data-driven 
system. Recently, bayesShrink[5], which is also a data-
driven subband adaptive technique, is proposed and 
outperforms VisuShrink and sometimes SureShrink. 

The organization of this paper is as follows. In Section II, 
the basic idea of image–denoising using VisuShrink[2], 
SureShrink[3], BayesShrink[5] and OracleShrink[5]  are 
described briefly. The PSNR values obtained for six 
denoised images for different algorithms are compared with 
Bivaraite Model 1. These models try to capture the 
dependencies between a coefficient and its parent. Section 
III, compares the Bivariate Model 1 and Bivariate Model 3. 
Then, Section IV describes the Bivariate model with 
modified marginal variance which use the Laplacian 
assumption. 

II. COMPARISON OF BIVARIATE MODEL  WITH OTHER 
IMAGE-DENOISING  MODELS 

The following subsections explain different image 
denoising shrinkage functions 

A. VisuShrink 
 For image   denoising, VisuShrink [1] (Visually 
calibrated adaptive smoothing) is known to yield smoothed 
images. The threshold choice for VisuShrink is 

Mlog2σ (called the universal threshold and 2σ  is the 
noise variance). 
 The soft-threshold function [2] (also called the Shrinkage 
function), 
 
   )0,max().sgn()( TxxxT −=η                  (1) 
 
takes the argument and shrinks it toward zero by the 
threshold ‘T’. 
 B. SureShrink 
 The SureShrink[3] uses a hybrid of the universal 
threshold and the SURE threshold, derived from 
minimizing stein’s unbiased risk estimator [4], and has 
shown to perform well. The SURE threshold choice is 
dependent on the energy of the particular sub band [3]. 
 The threshold on subband S to be used with a soft 
shrinkage function is, 
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where,  
YS is  the detail coefficients from subband S and NS is the 
number of coefficients YK in {YS}. 

C. OracleShrink 
 The OracleShrink, which is truly optimal soft-
thresholding estimator assuming the original image is 
known. The threshold of OracleShrink in each sub band is 

 ∑
=

−=
n

ji
ijijTTOS XYT

1,

2))((minarg η                  (4) 

with Xij known.  
D. BayesShrink 

 The BayesShrink rule uses a Bayesian mathematical 
framework for images to device subband dependent 
thresholds that are nearly optimal for soft threshold. The 
formula for the threshold on a given subband is [5], 

    ^

2^

X

n
ST

σ

σ
=                                  (5) 

where 

 
2^

nσ  is the estimated noise variance and 
^

Xσ 2    is the 
estimated signal variance on the sub band considered. 
 The noise variance is estimated as the median of the 
absolute deviation of the diagonal detail coefficients on the 
finest level (i.e., subband HH1).  
 The estimate of the signal standard deviation on subband 
S is 
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where 
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σ   is an estimate of the variance of the 

observations, with NS being the number of  the wavelet  
coefficients YK on the subband  under consideration. 
Combining equ. (5) and equ. (6), the threshold choice for 
BayesShrink is 
 

 
2^2^

2^2^2^

),max(

,ˆ

XnKS

Xn
X

nS

YT

T

σσ

σσσσ

≥=

<=
 (7) 

 
E. Bivariate Model 1 

 Let X2K represents the parent of X1K (X2K is the wavelet 
coefficient at the same position as the K th wavelet 
coefficient XK, but at the next coarser scale). The problem 
formulated in the wavelet domain as Y1K = X1K + n1K and 
Y2K = X2K + n2K to take into account the statistical 
dependencies between a coefficient and its parent. Y1k and 

Y2K are noisy observations of X1K and X2K also n1k and n2K 
are the noise samples.  

The estimator of X1 is [7]  
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which can be interpreted as a bivariate shrinkage function. 
Here (g) + is defined as [6] 
 
 
 ( g )+  =      {                                                 (9)  
 
 

This estimator requires the prior knowledge of the noise 
variance and the marginal variance for each wavelet 
coefficient [8]. 
 To estimate the noise variance σn

2 from the noisy wavelet 
coefficients, a robust median estimator is used from the 
finest scale wavelet coefficients [2]. 
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 The algorithm is summarized as follows: 
 
  1) Calculate the noise variance using (10). 
  2) Calculate 2ˆYσ  given in subsection 2.4. 

  3) Calculate 2ˆ Xσ  using (6). 

  4) Estimate each coefficient using 
^

Xσ   and         

   2
nσ  in   (8). 

 Fig. 1 and Table I show that the BiShrink shrinkage 
function which gives better PSNR (Peak Signal to Noise 
Ratio) when compared to the models described in 
subsections A,B, C and D. 
 
    (a)            (b) 

 
 

Fig. 1. (a) Original image, (b) Noisy image with PSNR 
19.15dB. Power of Noise added 29dB. 
 

0,  if g < 0 

g,         otherwise 
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Fig.1.(c) Comparison of denoised stonehenge image 
obtained for different shrinkage models  

III.COMPARISON OF DIFFERENT BIVARIATE MODELS 

The Bivariate Model 1 already described in section II. 
The algorithm for Bivariate Model 3 is summarized as 
follows: 
 1) Calculate the noise variance using (10). 
 2) For each subband, 
     (a) Calculate 2

1ˆYσ  and 2
2ˆYσ  using (11) and (12); 

     (b) Calculate 2
1σ̂  and 2

2σ̂  using (13) and (14); 
           (c) Estimate each coefficient using the successive                   
                 approximation method. 
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 Model 3 outperforms Model 1 in most of the cases. Four 
standard images are taken and the different bivariate models 
are applied to these test images. The PSNR values obtained 
are tabulated in table II. 

IV. MODEL 1 WITH LAPLACIAN ASSUMPTION 
 In our experiments, we obtained better PSNR values with 
Bivariate Model 1if we use Laplacian assumption. The 
corresponding marginal variance of noisy observations is 
given by [9], 

   
2
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σ            (17) 

 
  Fig. 2 and Fig. 3 compare the Bivariate Model 1, 
Bivariate Model 3 and Bivariate Model 1 with Laplacian 
assumption.  
 Table II shows that the Bivariate Model 1 with 
Laplacian assumption outperforms Bivariate Model 1 and 
Bivariate Model 3. 

 
Fig.2 comparison of different Bivariate Models using 
Barbara standard image. 
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Fig.3.(a) Original image (b) Noisy image with PSNR = 18.15 dB (c) Model 1with PSNR = 23.02 dB (d) Model 3  
with PSNR = 23.43 dB (e) Model 1 with Laplacian assumption PSNR = 23.77 dB. 
 
  

  TABLE I 
FOR VARIOUS TEST IMAGES AND P VALUES, LISTS PSNR OF (1)VisuShrink, (2) SureShrink, (3) OracleShrink (4) 

BayesShrink and (5) BiShrink 

 
   Noisy  VisuShrink  SureShrink  OracleShrink  BayesShrink  BiShrink 

 
 

Lena 
  P=25dB        23.14   24.71    26.81    26.81     26.31    29.20 
  P=26dB  22.13   23.54    25.55    26.56     26.17    28.64 
Clown 
  P=25dB  23.14   24.65    25.30    25.41     24.66    28.90 
  P=26dB  22.13   23.50    25.67    25.13     24.56    28.08 
Boat 
  P=25dB  23.14   24.62    24.88    24.88     24.23    28.05 
  P=26dB  22.13   23.48    24.68    24.68     24.15    27.45 
Goldhill 
  P=25dB  23.14   24.64    26.24    26.23     26.03    28.20 
  P=26dB  22.13   23.50    26.06    26.05     25.90    27.66 
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TABLE -II 
FOR VARIOUS TEST IMAGES AND P VALUES, LISTS PSNR OF (1) Model 1, (2) Model 3, (3) Model 1 with Laplacian Assumption  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. CONCLUSION 
 In this paper the different shrinkage functions used for 
image denoising were discussed and the results were 
verified experimentally using MATLAB 6.5 image 
processing toolbox. In order to show the effectiveness of 
the BiShrink estimator, six examples were presented and 
compared with other effective techniques. The improved 
PSNR was obtained in the BayesShrink estimator, when 
simultaneous denoising and compression is used [5]. In 
BiShrink estimator, in addition to the orthogonal wavelet 
transform, dual-tree Complex Wavelet transform (CWT) [7, 
8] is used to improve PSNR. 
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  Noisy    Model 1    Model 3   Model 1with Laplacian 

                     Assumption 
         PSNR (dB)    PSNR (dB)         PSNR (dB)       PSNR(dB) 
 
Lena 
 P=27dB  21.15    28.05      28.36      28.51 
 P=28dB  20.14    27.52      27.75      27.89 
Barbara 
 P=27dB  21.15    24.63      25.17      25.49 
 P=28dB  20.14    24.12      24.57      24.93 
Boat 
 P=27dB  21.15    24.63      25.17      25.49 
 P=28dB  20.14    24.12      24.57      24.93 
Goldhill 
 P=27dB  21.15    27.20      27.48      27.64 
 P=28dB  20.14    26.64      26.66      27.07 
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