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Abstract—Analysis and visualization of microarraydata is 

veryassistantfor biologists and clinicians in the field of diagnosis and 
treatment of patients. It allows Clinicians to better understand the 
structure of microarray and facilitates understanding gene expression 
in cells. However, microarray dataset is a complex data set and has 
thousands of features and a very small number of observations. This 
very high dimensional data set often contains some noise, non-useful 
information and a small number of relevant features for disease or 
genotype. This paper proposes a non-linear dimensionality reduction 
algorithm Local Principal Component (LPC) which aims to maps 
high dimensional data to a lower dimensional space. The reduced 
data represents the most important variables underlying the original 
data. Experimental results and comparisons are presented to show the 
quality of the proposed algorithm. Moreover, experiments also show 
how this algorithm reduces high dimensional data whilst preserving 
the neighbourhoods of the points in the low dimensional space as in 
the high dimensional space.  
 

Keywords—Linear Dimension Reduction;Non-Linear Dimension 
Reduction; Principal Component Analysis; Biologists. 

I. INTRODUCTION 
IMENSIONALITY reduction is one of the most effective and 
essential tools in the microarray domain. It aims to 

reduce, understand and visualize the structure of complex data 
sets by transforming a high-dimensional data set into a lower 
dimensional data set which represents the most important 
variables that underlie the original data. This significant and 
important tool attracts many researchers working in the field 
of bioinformatics and deals with gene expression data sets to 
work on the dimensionality reduction [1], [2], [3].  

High dimensionality with low numbers of observations is 
one of characteristics of gene expression data sets. One reason 
for this is because microarray experiments are expensive to 
produce many replications. As a result, analysis and 
visualization is difficult in practice and becomes an obstacle 
for clinicians and biologists in the field of diagnosis and 
treatment of patients such as childhood leukaemia sufferers 
[4]. Visualizing high dimensional data and extracting the 
effective dimension of the data set are two important 
outcomes achieved by dimensionality reduction. 
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Biologists and clinicians may be able to better understand 
the structure of a complex microarray data set and the gene 
expression in cells when reduced and visualized in 3D or 2D. 
Moreover, dimensionality reduction is an essential tool in the 
microarray domain in order to extract the effective dimension 
of the data set and reduce high dimensional data into more 
easily handled low dimensional data [5]. For example, due to 
the curse of dimensionality you could not directly find and 
retrieve similar data points for a given data point in a very 
high dimensional space without applying a dimensionality 
reduction technique as a pre-processing step for retrieving 
process. 

Several algorithms and techniques have been proposed for 
dimensionality reduction. Principal component analysis (PCA) 
[15] is one of the most popular and widely used techniques. 
PCA is considered as a linear method and very simple 
effective tool but it is not efficient for high dimensional and 
complex data set. This is due to the fact that PCA can not 
retrieve precisely the true latent variables of complex and non-
linear data sets [6]. Data in a very high dimensional space 
often exists in a lower dimensional nonlinear manifold. With 
this kind of data, the intrinsic nonlinear structure could not be 
found through a linear dimension reduction technique. 
Another drawback of PCA is that the size of the covariance 
matrix is proportional to the dimensionality of the data-points. 
In microarray datasets, where the number of variables is 
muchgreater than the number of data points (a typical 
microarray dataset would have a 150 data points with 
thousands of variables), the computation of eigenvalues and 
eigenvectors is costly and might be impracticable for the 
covariance matrix. 

In order to overcome the drawback of linear dimensionality 
reduction in a very high dimensional dataset, several non-
linear dimensionality reduction methods have been developed. 
Non-Linear Dimensionality Reduction methods are often 
more powerful than linear ones, because the connection 
between the latent variables and observed ones may be much 
richer than simple matrix multiplication [6]. 

A recent development of non-linear algorithm is Local 
Linear Embedding (LLE) [2]. LLE is efficient and powerful 
for dimensionality reduction among the other algorithms [6], 
[7], [8]. However, this algorithm has a good performance 
when applied on protein structure description. 

Local Tangent Space Analysis (LTSA) is another nonlinear 
dimensionality reduction technique that describes local 
properties of the high-dimensional data using the local tangent 
space of each data point [10]. This technique has been 
successfully applied on microarray data. However, it requires 
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k≥d where k is the number of nearest neighbourhoods and d is 
the dimensionality target. As a result, LTSA is good in 
visualization. 

In this paper, a nonlinear dimension reduction algorithm is 
proposed to handle the curse of dimensionality of microarray 
data. Local Principal Component (LPC) is a new algorithm for 
nonlinear dimension reduction. The algorithm is based on the 
first principal component of the local neighbourhood of each 
data point. The idea behind this algorithm is that the drawback 
of PCA is when it applied on a non linear and folded data. 
However, if we apply PCA on a local neighbourhood of each 
data point, these local data points might not folded and has a 
linear structure. For example, in a Swiss roll data, 100 data 
points at least are required to have folded shape with the non 
linear structure. The experiments show LPC outperforms PCA 
in reducing the dimension of non-linear structures and 
visualization performance. 

The rest of this paper is organized as follows. Section II 
introduces the algorithm Local Principal Component.Section 
III introduces the different datasets that used in this 
study.Section IV discusses the quality of the algorithm and 
error estimation.We will discuss the validation of this 
algorithm in Section V by applying LPC on Iris, Swiss roll 
and microarray dataset.SectionVI presents a comparative 
review with other similaralgorithms. In Section VII, we draw 
conclusions about the results and present some of the future 
work. 

II. ALGORITHM OF LPC 
This algorithm takes as input Xϵ RmxNand produces 

outputYϵRdxNwhere d<m is the dimensionality of the 
embedding input vector X in the low dimensional space Y. 
Four steps are involved in this algorithm. The first step is to 
compute the neighbors for each data point. For that, we 
determine the k-nearest neighbors for each data point based on 
the Euclidean distance. As with many non NLDR algorithms, 
the quality of dimensionality reduction is sensitive to the 
value of parameter k which should be carefully chosen. 
Otherwise the result will be exposed to the loss of quality. If 
this parameter is tuned with a very high value, the algorithm 
will loose its nonlinear character and act as a linear 
dimensional reduction. On the other hand, if the value is too 
small, the data points will be above each other and the 
mapping will not reflect any global properties [11].After 
computing the k nearest neighbors for each data point, N cells 
or matrices are created with d*k size. 

The second step is to determine the first principal 
component for each matrix by solving the eigenvalues and 
eigenvectors problem of the covariance matrix. 

The third step is to calculate the orthogonal projection of 
the first eigenvector before storing them in a square matrix M 
∈RN*Nbased on the indexes of the neighbourhoodsindices 
obtained from the first step.. 

The final step is to calculate the embedding coordinates Y 
using the M matrix and find the spectral embedding vector 
using the eigenvectors of this matrix. This task is achieved by 

solving the global eigenvalues and eigenvectors of the squared 
matrix M. 
These steps are accomplished using the following algorithm: 
Step 1. For each i = 1, · · ·, N find the k local nearest 
neighboursof each points and compute the first  
principal component of the corresponding matrix. This  
couldbe described in the following two steps, 

1.1 Determine k nearest neighbors xij of xi, j =1, · · ·,k, N 
matrices with d*k size are obtained from this step. 

1.2 Compute the first principal componentP∈ Rkx1ofthe N   
matrixes obtained from the step 1.1. 

1.3 Compute the local orthogonal projection O∈ Rkxk. 
O = P*P’-I         (1) 

Where I is identity matrix of size k*k 
1.4 Let Ii= {i1, ...,ik}the set of indices forthe k nearest 

neighbors of xi.Construct the square matrix Mby 
locally summing the orthogonal projection based on 
the neighborhoods indices Ii: 

M(Ii, Ii) = M(Ii, Ii)+O  (2) 
 
Step 2.Solve the eigenvalues and eigenvectors problem for  

theglobalmatrix M. 

III. DATASETS USED 
Several datasets have been used in this study for validation, 

error estimation and experiments. A Swiss-roll, which was 
created to test out various dimensionality reduction algorithms, 
has been used in this study for different purposes. It is 
generated randomly by sampling a 3D Swiss-roll surface with 
no class label information. The second one is the famous Iris 
data set provided by Anderson [12]. The data set has 4 
features and 150 samples consisting of three species of Iris 
flower with 50 samples of each species.Microarray is another 
data set has been used in this study. The data is composed of 
72 observations with 255 features. The 72 observations are 
divided into two clusters which separate individuals between 
the diseased (-1) and healthy (1).This data set has been pre-
processed by applying a feature selection algorithm in order to 
remove the noise and irrelevant features which affect the 
result of dimensionality reduction algorithm [16].  

IV. ERROR ESTIMATION OF LPC 
Different methods have been proposed for error estimation 

and quality measurement of dimensionality reduction. For this 
algorithm, we have used trustworthiness measurement 
proposed by Kaski et al [13] to measure the quality of the 
algorithm LPC. As our main issueof dimensionality reduction 
is to preserve the neighbourhoods of the points in the input 
space and output space, we have decided to use this type of 
quality measurement thatis based on the comparison of the 
neighbourhood of the points in the input and output space. For 
example if point x is close to points w and z in the input 
spaceX, then point x should be also close to pointsw and z in 
the output reduced spaceYotherwise an error arises after 
reduction. In Figure 1, we have a point Xi in the input space 
(left image) with the nearest neighbours points represented in 
red colour (point w and z). These points transformed and 
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mapped into lower dimensional space. The point Xi 
transformed into another point Yi. The red points still nearest 
neighbours for the point Yiexcept the point z which becomes 
out of the nearest neighbours points. On the other hand, a blue 
point becomes a new nearest point for the point Yi whereit 
was not in the input space.In this case, we don’t have a 
complete trustworthinessbecause the neighbourhood of the 
point Xi have been changed between the input and output 
space. 

 

 
Fig. 1: Types of errors in reduction. 

Trustworthiness aims to find to which extent neighbors in 
the input space also have corresponding neighbors in the 
output space by ranking of neighbourhood point sets in input 
and output space. The rule of trustworthiness can be defined 
as follows: Let N be the number of data samples and r(i, j) be 
the rank of the data sample j in the ordering according to the 
distance from i in the original data space. Denote by Uk(i) the 
set of those data samples that are in the neighbourhood of size 
k of the sample i in the visualization display but not in the 
original data space [14]. The measure of trustworthiness 
Mtrust(k) of the dimensionality reduction is 

 

∑ ∑
= ∈

−−=
N

i iUj
trust

k

kjirkAkM
1 )(

)),(()(1)(        (3) 

 
Two data sets have been examined by trustworthiness; the 

first dataset is a Swiss-roll data set and the second one is 
microarray data set. The two data setshave been reduced 
several times with different values of the parameter k. Figure 
2 and 3 show the obtained result of the trustworthiness of LPC 
applied on Swiss-roll data set and Microarray data set 
respectively. As can be seen from Figure 2, the 
trustworthiness is quite stable around the value of 0.98 for 
different values of parameter k.In Figure 3, the trustworthiness 
is dramatically changed based the parameterk, but it can be 
noticed that the trustworthiness has highestvalues for k>10and 
especially at k=14. 
 
 

 
Fig. 2: Trustworthiness of LPC on Swiss-roll data set 

 
Fig. 3: Trustworthiness of LPC on Microarray data set 

 
V. EXPERIMENTS 

In order to demonstrate the validity of the proposed 
algorithm, we performed experiments using Iris data set and 
artificial Swiss roll data set. 
 
A. Validation Experiments 

Iris data set: The algorithm is tested on theIris data set 
described in Section III.  

Figure 4a represents the scattering of the original data set in 
2D space. As can be seen, some data points from different 
classes are mixed together in the original 2D space. Figure 4b 
shows the data reduced to 2D data by LPC. In Figure 4b, the 
visualization performance shows that the three different 
classes are still separated even after the data has been reduced 
into two dimensions. Moreover, the trustworthiness 
measurement of this reduction is 0.995 for k=12. The number 
0.995 means that the neighbourhoods of the data set are 
preserved with a very small error in the low dimensional space. 
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Fig. 4a: Original Iris data set 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4b: Iris data set processed by LPC 

Swiss Roll data set: As Roll data set was created to test out 
various dimensionality reduction algorithms, The algorithm is 
tested on the this data. In this experiment, we have generated 
1000 points to test our algorithm. 

Figure 5a represents the original data set in 3D space. As 
can be seen, the data are folded to have the Swiss-roll form. 
Figure 5b shows the data which reduced to 2D data by PCA is 
lacking the quality of visualization performance and 
dimensionality reduction. In Figure 5c, the data has better 
visualization than PCA and it shows that an adequate 
embedding preserving the shape of manifold can be achieved 
by LPC. In order to quantify the comparison between the two 
outputs, we have measured the trustworthiness of 
dimensionality reduction performed by PCA and LPC. The 
trustworthiness of LPC for Swiss-roll is 0.997 compared to 
0.848 for PCA which suggests that LPC embedding is better 
than PCA for maintaining neighbourhood relationships. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5a: Swiss roll data set 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 5b: Swiss roll data reduced to 2D by PCA 

B. Testing Experiments 
Microarray Data:As our target from this algorithm is 
microarray data, a Leukaemia dataset has been used to 
demonstrate this algorithm. 

The images below show the result of the obtained data set 
after applying PCA algorithm and LPC algorithm (Figure 6a 
and Figure 6b respectively). 

It can be clearly seen that LPC reduced the data much 
better than PCA in terms of preserving the intrinsic 
dimensionality of the data.  Also the trustworthiness of LPC is 
much better than PCA which has a value of 0.80. On the other 
hand, LPC has 0.86 value as a trustworthiness of preserving 
the neighbourhoods of the point in the low dimensional space. 
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Fig. 7: Trustworthiness of LPC Vs LLE using Swiss-roll data set 

 
Fig. 8: Trustworthiness of LPC Vs LLE using Micro array data set 
 

VII. CONCLUSION AND FURTHER STUDY 
In this paper we have proposed an algorithm for high 

dimensional data reduction based on local principal 
component. We have discussed the validation experiment by 
applying the LPC on two different data sets (Iris and Swiss-
roll). Moreover, we have applied LPC on a Leukaemia 
microarray data set. A good dimension reduction results have 
been demonstrated through these experiments and the 
algorithm outperform PCA in some aspects. 

This algorithm provides a way to visualize data in order to 
see the position of a patient with respect to other patients. It 
also reduces high dimensional data into more easily handled 
low dimensional data. 

Our future work is to make this algorithm as a supervised 
algorithm in order to have more accurate result. Another 

effective plan is to weight the features and include theses 
weights in the Euclidean distance measurement for retrieving 
the knearest neighbours. 
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