Search results for: Numerical Simulation
2445 Target Trajectory Design of Parametrically Excited Inverted Pendulum for Efficient Bipedal Walking
Authors: Toyoyuki Honjo, Takeshi Hayashi, Akinori Nagano, Zhi-Wei Luo
Abstract:
For stable bipedal gait generation on the level floor, efficient restoring of mechanical energy lost by heel collision at the ground is necessary. Parametric excitation principle is one of the solutions. We dealt with the robot-s total center of mass as an inverted pendulum to consider the total dynamics of the robot. Parametrically excited walking requires the use of continuous target trajectory that is close to discontinuous optimal trajectory. In this paper, we proposed the new target trajectory based on a position in the walking direction. We surveyed relations between walking performance and the parameters that form the target trajectory via numerical simulations. As a result, it was found that our target trajectory has the similar characteristics of a parametrically excited inverted pendulum.Keywords: Dynamic Bipedal Walking, Parametric Excitation, Target Trajectory Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16772444 GPI Observer-based Tracking Control and Synchronization of Chaotic Systems
Authors: Dangjun Zhao, Yongji Wang, Lei Liu
Abstract:
Based on general proportional integral (GPI) observers and sliding mode control technique, a robust control method is proposed for the master-slave synchronization of chaotic systems in the presence of parameter uncertainty and with partially measurable output signal. By using GPI observer, the master dynamics are reconstructed by the observations from a measurable output under the differential algebraic framework. Driven by the signals provided by GPI observer, a sliding mode control technique is used for the tracking control and synchronization of the master-slave dynamics. The convincing numerical results reveal the proposed method is effective, and successfully accommodate the system uncertainties, disturbances, and noisy corruptions.
Keywords: GPI observer, sliding mode control, master-slave synchronization, chaotic systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19952443 A New Approach for Controlling Overhead Traveling Crane Using Rough Controller
Authors: Mazin Z. Othman
Abstract:
This paper presents the idea of a rough controller with application to control the overhead traveling crane system. The structure of such a controller is based on a suggested concept of a fuzzy logic controller. A measure of fuzziness in rough sets is introduced. A comparison between fuzzy logic controller and rough controller has been demonstrated. The results of a simulation comparing the performance of both controllers are shown. From these results we infer that the performance of the proposed rough controller is satisfactory.
Keywords: Accuracy measure, Fuzzy Logic Controller (FLC), Overhead Traveling Crane (OTC), Rough Set Theory (RST), Roughness measure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17032442 Solving the Economic Dispatch Problem by Using Differential Evolution
Authors: S. Khamsawang, S. Jiriwibhakorn
Abstract:
This paper proposes an application of the differential evolution (DE) algorithm for solving the economic dispatch problem (ED). Furthermore, the regenerating population procedure added to the conventional DE in order to improve escaping the local minimum solution. To test performance of DE algorithm, three thermal generating units with valve-point loading effects is used for testing. Moreover, investigating the DE parameters is presented. The simulation results show that the DE algorithm, which had been adjusted parameters, is better convergent time than other optimization methods.Keywords: Differential evolution, Economic dispatch problem, Valve-point loading effect, Optimization method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16912441 Flow inside Micro-Channel Bounded by Superhydrophobic Surface with Eccentric Micro-Grooves
Authors: Yu Chen, Weiwei Ren, Xiaojing Mu, Feng Zhang, Yi Xu
Abstract:
The superhydrophobic surface is widely used to reduce friction for the flow inside micro-channel and can be used to control/manipulate fluid, cells and even proteins in lab-on-chip. Fabricating micro grooves on hydrophobic surfaces is a common method to obtain such superhydrophobic surface. This study utilized the numerical method to investigate the effect of eccentric micro-grooves on the friction of flow inside micro-channel. A detailed parametric study was conducted to reveal how the eccentricity of micro-grooves affects the micro-channel flow under different grooves sizes, channel heights, Reynolds number. The results showed that the superhydrophobic surface with eccentric micro-grooves induces less friction than the counter part with aligning micro-grooves, which means requiring less power for pumps.Keywords: Superhydrophobic, transverse grooves, heat transfer, slip length, microfluidics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10402440 Vibrational Behavior of Cylindrical Shells in Axial Magnetic Field
Authors: Sedrak Vardanyan
Abstract:
The investigation of the vibrational character of magnetic cylindrical shells placed in an axial magnetic field has important practical applications. In this work, we study the vibrational behaviour of such a cylindrical shell by making use of the so-called exact space treatment, which does not assume any hypothesis. We discuss the effects of several practically important boundary conditions on the vibrations of the described setup. We find that, for some cases of boundary conditions, e.g. clamped, simply supported or peripherally earthed, as well as for some values of the wave numbers, the vibrational frequencies of the shell are approximately zero. The theoretical and numerical exploration of this fact confirms that the vibrations are absent or attenuate very rapidly. For all the considered cases, the imaginary part of the frequencies is negative, which implies stability for the vibrational process.Keywords: Free vibrations, magnetic cylindrical shells, exact space treatment, bending vibrational frequencies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8112439 Kalman Filter Based Adaptive Reduction of Motion Artifact from Photoplethysmographic Signal
Authors: S. Seyedtabaii, L. Seyedtabaii
Abstract:
Artifact free photoplethysmographic (PPG) signals are necessary for non-invasive estimation of oxygen saturation (SpO2) in arterial blood. Movement of a patient corrupts the PPGs with motion artifacts, resulting in large errors in the computation of Sp02. This paper presents a study on using Kalman Filter in an innovative way by modeling both the Artillery Blood Pressure (ABP) and the unwanted signal, additive motion artifact, to reduce motion artifacts from corrupted PPG signals. Simulation results show acceptable performance regarding LMS and variable step LMS, thus establishing the efficacy of the proposed method.Keywords: Kalman filter, Motion artifact, PPG, Photoplethysmography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42612438 Simulating Gradient Contour and Mesh of a Scalar Field
Authors: Usman Ali Khan, Bismah Tariq, Khalida Raza, Saima Malik, Aoun Muhammad
Abstract:
This research paper is based upon the simulation of gradient of mathematical functions and scalar fields using MATLAB. Scalar fields, their gradient, contours and mesh/surfaces are simulated using different related MATLAB tools and commands for convenient presentation and understanding. Different mathematical functions and scalar fields are examined here by taking their gradient, visualizing results in 3D with different color shadings and using other necessary relevant commands. In this way the outputs of required functions help us to analyze and understand in a better way as compared to just theoretical study of gradient.Keywords: MATLAB, Gradient, Contour, Scalar Field, Mesh
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34412437 Pinch Analysis of Triple Pressure Reheat Supercritical Combined Cycle Power Plant
Authors: Sui Yan Wong, Keat Ping Yeoh, Chi Wai Hui
Abstract:
In this study, supercritical steam is introduced to Combined Cycle Power Plant (CCPP) in an attempt to further optimize energy recovery. Subcritical steam is commonly used in the CCPP, operating at maximum pressures around 150-160 bar. Supercritical steam is an alternative to increase heat recovery during vaporization period of water. The idea of improvement using supercritical steam is further examined with the use of exergy, pinch analysis and Aspen Plus simulation.
Keywords: Exergy, pinch, combined cycle power plant, CCPP, supercritical steam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5342436 A Simplified Analytical Approach for Coupled Injection Method of Colloidal Silica with Time Dependent Properties
Authors: M. A. Nozari, R. Ziaie Moayed
Abstract:
Electro-osmosis in clayey soils and sediments, for purposes of clay consolidation, dewatering, or cleanup, and electro injection in porous media is widespread recent decades. It is experimentally found that the chemical properties of porous media especially PH change the characteristics of media. Electro-osmotic conductivity is a function of soil and grout material chemistry, altering with time. Many numerical approaches exist to simulate the of electro kinetic flow rate considering chemical changes. This paper presents a simplified analytical solution for constant flow rate based on varying electro osmotic conductivity and time dependent viscosity for injection of colloidal silica.
Keywords: Colloidal silica, electro-osmosis, pH, viscosity, zeta potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13392435 Optimal Data Compression and Filtering: The Case of Infinite Signal Sets
Authors: Anatoli Torokhti, Phil Howlett
Abstract:
We present a theory for optimal filtering of infinite sets of random signals. There are several new distinctive features of the proposed approach. First, we provide a single optimal filter for processing any signal from a given infinite signal set. Second, the filter is presented in the special form of a sum with p terms where each term is represented as a combination of three operations. Each operation is a special stage of the filtering aimed at facilitating the associated numerical work. Third, an iterative scheme is implemented into the filter structure to provide an improvement in the filter performance at each step of the scheme. The final step of the concerns signal compression and decompression. This step is based on the solution of a new rank-constrained matrix approximation problem. The solution to the matrix problem is described in this paper. A rigorous error analysis is given for the new filter.
Keywords: stochastic signals, optimization problems in signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12802434 A Novel Fuzzy Technique for Image Noise Reduction
Authors: Hamed Vahdat Nejad, Hameed Reza Pourreza, Hasan Ebrahimi
Abstract:
A new fuzzy filter is presented for noise reduction of images corrupted with additive noise. The filter consists of two stages. In the first stage, all the pixels of image are processed for determining noisy pixels. For this, a fuzzy rule based system associates a degree to each pixel. The degree of a pixel is a real number in the range [0,1], which denotes a probability that the pixel is not considered as a noisy pixel. In the second stage, another fuzzy rule based system is employed. It uses the output of the previous fuzzy system to perform fuzzy smoothing by weighting the contributions of neighboring pixel values. Experimental results are obtained to show the feasibility of the proposed filter. These results are also compared to other filters by numerical measure and visual inspection.Keywords: Additive noise, Fuzzy logic, Image processing, Noise reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21112433 Simulation and Analysis of Polyetheretherketone Implants for Diaphysis Femur Fracture
Authors: Abhishek Soni, Bhagat Singh
Abstract:
In the present work, reverse engineering approach has been used to create a 3D model of a fractured femur diaphysis bone using the computed tomography (CT) scan data. Thereafter, a counter fit fixation plate of polyetheretherketone (PEEK) composite has been designed and analyzed considering static physiological loading conditions. Static stress distribution and deformation analysis of the plate have been performed. From the analysis, it has been found that the stresses and deformation developed are quite low. This implies that these designed fixation plates will be able to provide stable fixation and thus resulting in improved fracture union.
Keywords: Customized implant, deformation, femur diaphysis, stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6822432 Cubic Trigonometric B-spline Approach to Numerical Solution of Wave Equation
Authors: Shazalina Mat Zin, Ahmad Abd. Majid, Ahmad Izani Md. Ismail, Muhammad Abbas
Abstract:
The generalized wave equation models various problems in sciences and engineering. In this paper, a new three-time level implicit approach based on cubic trigonometric B-spline for the approximate solution of wave equation is developed. The usual finite difference approach is used to discretize the time derivative while cubic trigonometric B-spline is applied as an interpolating function in the space dimension. Von Neumann stability analysis is used to analyze the proposed method. Two problems are discussed to exhibit the feasibility and capability of the method. The absolute errors and maximum error are computed to assess the performance of the proposed method. The results were found to be in good agreement with known solutions and with existing schemes in literature.
Keywords: Collocation method, Cubic trigonometric B-spline, Finite difference, Wave equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26032431 Generic Filtering of Infinite Sets of Stochastic Signals
Authors: Anatoli Torokhti, Phil Howlett
Abstract:
A theory for optimal filtering of infinite sets of random signals is presented. There are several new distinctive features of the proposed approach. First, a single optimal filter for processing any signal from a given infinite signal set is provided. Second, the filter is presented in the special form of a sum with p terms where each term is represented as a combination of three operations. Each operation is a special stage of the filtering aimed at facilitating the associated numerical work. Third, an iterative scheme is implemented into the filter structure to provide an improvement in the filter performance at each step of the scheme. The final step of the scheme concerns signal compression and decompression. This step is based on the solution of a new rank-constrained matrix approximation problem. The solution to the matrix problem is described in this paper. A rigorous error analysis is given for the new filter.Keywords: Optimal filtering, data compression, stochastic signals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13212430 Long-Term Simulation of Digestive Sound Signals by CEPSTRAL Technique
Authors: Einalou Z., Najafi Z., Maghooli K. Zandi Y, Sheibeigi A
Abstract:
In this study, an investigation over digestive diseases has been done in which the sound acts as a detector medium. Pursue to the preprocessing the extracted signal in cepstrum domain is registered. After classification of digestive diseases, the system selects random samples based on their features and generates the interest nonstationary, long-term signals via inverse transform in cepstral domain which is presented in digital and sonic form as the output. This structure is updatable or on the other word, by receiving a new signal the corresponding disease classification is updated in the feature domain.
Keywords: Cepstrum, databank, digestive disease, acousticsignal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15562429 A new Cellular Automata Model of Cardiac Action Potential Propagation based on Summation of Excited Neighbors
Authors: F. Pourhasanzade, S. H. Sabzpoushan
Abstract:
The heart tissue is an excitable media. A Cellular Automata is a type of model that can be used to model cardiac action potential propagation. One of the advantages of this approach against the methods based on differential equations is its high speed in large scale simulations. Recent cellular automata models are not able to avoid flat edges in the result patterns or have large neighborhoods. In this paper, we present a new model to eliminate flat edges by minimum number of neighbors.Keywords: Cellular Automata, Action Potential Simulation, Isotropic Pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19492428 Mean Velocity Modeling of Open-Channel Flow with Submerged Rigid Vegetation
Authors: M. Morri, A. Soualmia, P. Belleudy
Abstract:
Vegetation affects the mean and turbulent flow structure. It may increase flood risks and sediment transport. Therefore, it is important to develop analytical approaches for the bed shear stress on vegetated bed, to predict resistance caused by vegetation. In the recent years, experimental and numerical models have both been developed to model the effects of submerged vegetation on open-channel flow. In this paper, different analytic models are compared and tested using the criteria of deviation, to explore their capacity for predicting the mean velocity and select the suitable one that will be applied in real case of rivers. The comparison between the measured data in vegetated flume and simulated mean velocities indicated, a good performance, in the case of rigid vegetation, whereas, Huthoff model shows the best agreement with a high coefficient of determination (R2=80%) and the smallest error in the prediction of the average velocities.
Keywords: Analytic Models, Comparison, Mean Velocity, Vegetation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25382427 Effect of Secondary Curvature on Mixing Characteristic within Constant Circular Tubes
Authors: Minh Tuan Nguyen, Sang-Wook Lee
Abstract:
In this study, numerical simulations on laminar flow in sinusoidal wavy shaped tubes were conducted for mean Reynolds number of 250, which is in the range of physiological flow-rate and investigated flow structures, pressure distribution and particle trajectories both in steady and periodic inflow conditions. For extensive comparisons, various wave lengths and amplitudes of sine function for geometry of tube models were employed. The results showed that small amplitude secondary curvature has significant influence on the nature of flow patterns and particle mixing mechanism. This implies that characterizing accurate geometry is essential in accurate predicting of in vivo hemodynamics and may motivate further study on any possibility of reflection of secondary flow on vascular remodeling and pathophysiology.Keywords: Secondary curvature, Sinusoidal wavy tubes, Mixing Characteristics, Pulsatile flow, Hemodynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15942426 Coupled Galerkin-DQ Approach for the Transient Analysis of Dam-Reservoir Interaction
Authors: S. A. Eftekhari
Abstract:
In this paper, a numerical algorithm using a coupled Galerkin-Differential Quadrature (DQ) method is proposed for the solution of dam-reservoir interaction problem. The governing differential equation of motion of the dam structure is discretized by the Galerkin method and the DQM is used to discretize the fluid domain. The resulting systems of ordinary differential equations are then solved by the Newmark time integration scheme. The mixed scheme combines the simplicity of the Galerkin method and high accuracy and efficiency of the DQ method. Its accuracy and efficiency are demonstrated by comparing the calculated results with those of the existing literature. It is shown that highly accurate results can be obtained using a small number of Galerkin terms and DQM sampling points. The technique presented in this investigation is general and can be used to solve various fluid-structure interaction problems.
Keywords: Dam-reservoir system, Differential quadrature method, Fluid-structure interaction, Galerkin method, Integral quadrature method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18692425 Higher Order Statistics for Identification of Minimum Phase Channels
Authors: Mohammed Zidane, Said Safi, Mohamed Sabri, Ahmed Boumezzough
Abstract:
This paper describes a blind algorithm, which is compared with two another algorithms proposed in the literature, for estimating of the minimum phase channel parameters. In order to identify blindly the impulse response of these channels, we have used Higher Order Statistics (HOS) to build our algorithm. The simulation results in noisy environment, demonstrate that the proposed method could estimate the phase and magnitude with high accuracy of these channels blindly and without any information about the input, except that the input excitation is identically and independent distribute (i.i.d) and non-Gaussian.
Keywords: System Identification, Higher Order Statistics, Communication Channels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16722424 Stress Distribution in Axisymmetric Indentation of an Elastic Layer-Substrate Body
Authors: Kotaro Miura, Makoto Sakamoto, Yuji Tanabe
Abstract:
We focus on internal stress and displacement of an elastic axisymmetric contact problem for indentation of a layer-substrate body. An elastic layer is assumed to be perfectly bonded to an elastic semi-infinite substrate. The elastic layer is smoothly indented with a flat-ended cylindrical indenter. The analytical and exact solutions were obtained by solving an infinite system of simultaneous equations using the method to express a normal contact stress at the upper surface of the elastic layer as an appropriate series. This paper presented the numerical results of internal stress and displacement distributions for hard-coating system with constant values of Poisson’s ratio and the thickness of elastic layer.
Keywords: Indentation, contact problem, stress distribution, coating materials, layer-substrate body.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8202423 Motion Protection System Design for a Parallel Motion Platform
Authors: Dongsu Wu, Hongbin Gu
Abstract:
A motion protection system is designed for a parallel motion platform with subsided cabin. Due to its complex structure, parallel mechanism is easy to encounter interference problems including link length limits, joints limits and self-collision. Thus a virtual spring algorithm in operational space is developed for the motion protection system to avoid potential damages caused by interference. Simulation results show that the proposed motion protection system can effectively eliminate interference problems and ensure safety of the whole motion platform.Keywords: Motion protection, motion platform, parallelmechanism, Stewart platform, collision avoidance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15712422 DPSO Based SEPIC Converter in PV System under Partial Shading Condition
Authors: K. Divya, G. Sugumaran
Abstract:
This paper proposes an improved Maximum Power Point Tracking of PhotoVoltaic system using Deterministic Partical Swarm Optimization technique. This method has the ability to track the maximum power under varying environmental conditions i.e. partial shading conditions. The advantage of this method, particles moves in the restricted value of velocity to achieve the maximum power. SEPIC converter is employed to boost up the voltage of PV system. To estimate the value of the proposed method, MATLAB simulation carried out under partial shading condition.
Keywords: DPSO, Partial shading condition, P&O, PV, SEPIC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22752421 RBS Characteristic of Cd1−xZnxS Thin Film Fabricated by Vacuum Deposition Method
Authors: N. Dahbi, D-E. Arafah
Abstract:
Cd1−xZnxS thins films have been fabricated from ZnS/CdS/ZnS multilayer thin film systems, by using the vacuum deposition method; the Rutherford backscattering (RBS) technique have been applied in order to determine the: structure, composition, depth profile, and stoichiometric of these films. The influence of the chemical and heat treatments on the produced films also have been investigated; the RBS spectra of the films showed that homogenous Cd1−xZnxS can be synthesized with x=0.45.
Keywords: Cd1−xZnxS, chemical treatment, depth profile, heat treatment, RBS, RUMP simulation, thin film, vacuum deposition, ZnS/CdS/ZnS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17382420 SDVAR Algorithm for Detecting Fraud in Telecommunications
Authors: Fatimah Almah Saaid, Darfiana Nur, Robert King
Abstract:
This paper presents a procedure for estimating VAR using Sequential Discounting VAR (SDVAR) algorithm for online model learning to detect fraudulent acts using the telecommunications call detailed records (CDR). The volatility of the VAR is observed allowing for non-linearity, outliers and change points based on the works of [1]. This paper extends their procedure from univariate to multivariate time series. A simulation and a case study for detecting telecommunications fraud using CDR illustrate the use of the algorithm in the bivariate setting.Keywords: Telecommunications Fraud, SDVAR Algorithm, Multivariate time series, Vector Autoregressive, Change points.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22562419 Complexity Reduction Approach with Jacobi Iterative Method for Solving Composite Trapezoidal Algebraic Equations
Authors: Mohana Sundaram Muthuvalu, Jumat Sulaiman
Abstract:
In this paper, application of the complexity reduction approach based on half- and quarter-sweep iteration concepts with Jacobi iterative method for solving composite trapezoidal (CT) algebraic equations is discussed. The performances of the methods for CT algebraic equations are comparatively studied by their application in solving linear Fredholm integral equations of the second kind. Furthermore, computational complexity analysis and numerical results for three test problems are also included in order to verify performance of the methods.
Keywords: Complexity reduction approach, Composite trapezoidal scheme, Jacobi method, Linear Fredholm integral equations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15952418 Robust Stabilization of Rotational Motion of Underwater Robots against Parameter Uncertainties
Authors: Riku Hayashida, Tomoaki Hashimoto
Abstract:
This paper provides a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. Underwater robots are expected to be used for various work assignments. The large variety of applications of underwater robots motivates researchers to develop control systems and technologies for underwater robots. Several control methods have been proposed so far for the stabilization of nominal system model of underwater robots with no parameter uncertainty. Parameter uncertainties are considered to be obstacles in implementation of the such nominal control methods for underwater robots. The objective of this study is to establish a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. The effectiveness of the proposed method is verified by numerical simulations.Keywords: Robust control, stabilization method, underwater robot, parameter uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5692417 Analysis and Circuit Modeling of APDs
Authors: A. Ahadpour Shal, A. Ghadimi, A. Azadbar
Abstract:
In this paper a new method for increasing the speed of SAGCM-APD is proposed. Utilizing carrier rate equations in different regions of the structure, a circuit model for the structure is obtained. In this research, in addition to frequency response, the effect of added new charge layer on some transient parameters like slew-rate, rising and falling times have been considered. Finally, by trading-off among some physical parameters such as different layers widths and droppings, a noticeable decrease in breakdown voltage has been achieved. The results of simulation, illustrate some features of proposed structure improvement in comparison with conventional SAGCM-APD structures.Keywords: Optical communication systems (OCS), Circuit modeling, breakdown voltage, SAGCM APD
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20672416 Unsteady Boundary Layer Flow over a Stretching Sheet in a Micropolar Fluid
Authors: Roslinda Nazar, Anuar Ishak, Ioan Pop
Abstract:
Unsteady boundary layer flow of an incompressible micropolar fluid over a stretching sheet when the sheet is stretched in its own plane is studied in this paper. The stretching velocity is assumed to vary linearly with the distance along the sheet. Two equal and opposite forces are impulsively applied along the x-axis so that the sheet is stretched, keeping the origin fixed in a micropolar fluid. The transformed unsteady boundary layer equations are solved numerically using the Keller-box method for the whole transient from the initial state to final steady-state flow. Numerical results are obtained for the velocity and microrotation distributions as well as the skin friction coefficient for various values of the material parameter K. It is found that there is a smooth transition from the small-time solution to the large-time solution.Keywords: Boundary layer, micropolar fluid, stretching surface, unsteady flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2360