Search results for: Colloidal silica
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 153

Search results for: Colloidal silica

153 A Simplified Analytical Approach for Coupled Injection Method of Colloidal Silica with Time Dependent Properties

Authors: M. A. Nozari, R. Ziaie Moayed

Abstract:

Electro-osmosis in clayey soils and sediments, for purposes of clay consolidation, dewatering, or cleanup, and electro injection in porous media is widespread recent decades. It is experimentally found that the chemical properties of porous media especially PH change the characteristics of media. Electro-osmotic conductivity is a function of soil and grout material chemistry, altering with time. Many numerical approaches exist to simulate the of electro kinetic flow rate considering chemical changes. This paper presents a simplified analytical solution for constant flow rate based on varying electro osmotic conductivity and time dependent viscosity for injection of colloidal silica.

Keywords: Colloidal silica, electro-osmosis, pH, viscosity, zeta potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
152 Development of a Porous Silica Film by Sol-gel Process

Authors: Binay K. Dutta, Tayseir M. Abd Ellateif, Saikat Maitra

Abstract:

In the present work homogeneous silica film on silicon was fabricated by colloidal silica sol. The silica sol precursor with uniformly granular particle was derived by the alkaline hydrolysis of tetraethoxyorthosilicate (TEOS) in presence of glycerol template. The film was prepared by dip coating process. The templated hetero-structured silica film was annealed at elevated temperatures to generate nano- and meso porosity in the film. The film was subsequently annealed at different temperatures to make it defect free and abrasion resistant. The sol and the film were characterized by the measurement of particle size distribution, scanning electron microscopy, XRD, FTIR spectroscopy, transmission electron microscopy, atomic force microscopy, measurement of the refractive index, thermal conductivity and abrasion resistance. The porosity of the films decreased whereas refractive index and dielectric constant of it `increased with the increase in the annealing temperature. The thermal conductivity of the films increased with the increase in the film thickness. The developed porous silica film holds strong potential for use in different areas.

Keywords: Silica film, Nanoporous, Sol-gel, Templating, Dip coating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3042
151 Influence of Silica Fume on Ultrahigh Performance Concrete

Authors: Vitoldas Vaitkevičius, Evaldas Šerelis

Abstract:

Silica fume, also known as microsilica (MS) or  condensed silica fume is a by-product of the production of silicon  metal or ferrosilicon alloys. Silica fume is one of the most effective  pozzolanic additives which could be used for ultrahigh performance  and other types of concrete. Despite the fact, however is not entirely  clear, which amount of silica fume is most optimal for UHPC. Main  objective of this experiment was to find optimal amount of silica  fume for UHPC with and without thermal treatment, when different  amount of quartz powder is substituted by silica fume. In this work  were investigated four different composition of UHPC with different  amount of silica fume. Silica fume were added 0, 10, 15 and 20% of  cement (by weight) to UHPC mixture. Optimal amount of silica fume  was determined by slump, viscosity, qualitative and quantitative  XRD analysis and compression strength tests methods.

Keywords: Compressive strength, silica fume, ultrahigh performance concrete, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4565
150 Modeling of a Vehicle Wheel System Having a Built-in Suspension Structure Consisted of Radially Deployed Colloidal Spokes between Hub and Rim

Authors: Barenten Suciu

Abstract:

In this work, by replacing the traditional solid spokes with colloidal spokes, a vehicle wheel with a built-in suspension structure is proposed. Following the background and description of the wheel system, firstly, a vibration model of the wheel equipped with colloidal spokes is proposed, and based on such model the equivalent damping coefficients and spring constants are identified. Then, a modified model of a quarter-vehicle moving on a rough pavement is proposed in order to estimate the transmissibility of vibration from the road roughness to vehicle body. In the end, the optimal design of the colloidal spokes and the optimum number of colloidal spokes are decided in order to minimize the transmissibility of vibration, i.e., to maximize the ride comfort of the vehicle.

Keywords: Built-in suspension, colloidal spoke, intrinsic spring, vibration analysis, wheel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
149 Characterization for Post-treatment Effect of Bagasse Ash for Silica Extraction

Authors: Patcharin Worathanakul, Wisaroot Payubnop, Akhapon Muangpet

Abstract:

Utilization of bagasse ash for silica sources is one of the most common application for agricultural wastes and valuable biomass byproducts in sugar milling. The high percentage silica content from bagasse ash was used as silica source for sodium silicate solution. Different heating temperature, time and acid treatment were studies for silica extraction. The silica was characterized using various techniques including X-ray fluorescence, X-ray diffraction, Scanning electron microscopy, and Fourier Transform Infrared Spectroscopy method,. The synthesis conditions were optimized to obtain the bagasse ash with the maximum silica content. The silica content of 91.57 percent was achieved from heating of bagasse ash at 600°C for 3 hours under oxygen feeding and HCl treatment. The result can be used as value added for bagasse ash utilization and minimize the environmental impact of disposal problems.

Keywords: Bagasse ash, synthesis, silica, extraction, posttreatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3776
148 Polyisoprene-coated Silica/Natural Rubber Composite

Authors: Chatwarin Poochai, Puttichai Pae-on, Thirawudh Pongpayoon

Abstract:

The commercial white tyres are usually used for forklifts in food and medicine industries. Conventionally, silica is used as reinforcement in the tyres. However, the adhesion between silica particles and rubber is remarkably poor. To improve the problem of adhesion and hence enhance wear resistance, modification of silica surface is one of the solutions. In this work, the natural rubber compound blending with polyisoprene-coated silica prepared by admicellar polymerization technique was studied to compare with the natural rubber compound of unmodified silica. The surface characterization of modified silica was also examined by SEM, FTIR, and TGA. The results show that polyisoprene-coated silica/natural rubber compound gave better overall mechanical properties, especially wear resistance with the improvement of the adhesion between silica and natural rubber matrix that can be seen in the SEM micrograph.

Keywords: White tyre, admicellar polymerization, modified silica, wear resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2962
147 Preparation and Characterization of Self Assembled Gold Nanoparticles on Amino Functionalized SiO2 Dielectric Core

Authors: M.E.khosroshahi , M.S.Nourbakhsh

Abstract:

Wet chemistry methods are used to prepare the SiO2/Au nanoshells. The purpose of this research was to synthesize gold coated SiO2 nanoshells for biomedical applications. Tunable nanoshells were prepared by using different colloidal concentrations. The nanoshells are characterized by FTIR, XRD, UV-Vis spectroscopy and atomic force microscopy (AFM). The FTIR results confirmed the functionalization of the surfaces of silica nanoparticles with NH2 terminal groups. A tunable absorption was observed between 470-600 nm with a maximum range of 530-560 nm. Based on the XRD results three main peaks of Au (111), (200) and (220) were identified. Also AFM results showed that the silica core diameter was about 100 nm and the thickness of gold shell about 10 nm.

Keywords: Gold nanoshells, Synthesis, UV-vis spectroscopy, XRD, AFM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3231
146 Preparation of Homogeneous Dense Composite of Zirconia and Alumina (ZTA)using Colloidal Filtration

Authors: H. Wakily, M. Mehrali, H. S. C. Metselaar

Abstract:

Homogeneous composites of alumina and zirconia with a small amount of MgO (<1 wt %) were prepared by colloidal filtration. The object of using ZrO2 (15wt %) was to provide zirconia toughened alumina (ZTA). Suspensions of alumina and Zirconia with various solid loadings and various concentrations of Dolapix CE64 as surfactant were studied. The stability of these suspensions was investigated using rheological measurements. The optimum amount of using Dolapix was 0.8wt% for ZTA containing MgO suspension which gave low apparent viscosity in basic area (100 mPa s at shear rate of 50 s-1). The satisfactory mixtures were made into sample pallets using colloidal filtration. The process was completed with pressureless sintering in suitable temperature. Phase, grain size and qualitative compositional analysis were done using X-ray diffraction (XRD) and scanning electron microscopy (SEM) images. ZTA containing 0.05 wt% MgO shows the lowest grain size for alumina around 0.5 μm. Densification studies show that near full densities (>99%) were obtained for ZTA ceramic containing 0.05 wt% MgO in 1500 °C.

Keywords: Colloidal filtration, Dolapix, MgO, Zirconiatoughened alumina.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2947
145 Effect of Incorporating Silica Fume in Fly Ash Geopolymers

Authors: Suresh Thokchom, Debabrata Dutta, Somnath Ghosh

Abstract:

This paper presents results of an experimental study performed to investigate effect of incorporating silica fume on physico-mechanical properties and durability of resulting fly ash geopolymers. Geopolymer specimens were prepared by activating fly ash incorporated with additional silica fume in the range of 2.5% to 5%, with a mixture of sodium hydroxide and sodium silicate solution having Na2O content of 8%. For studying durability, 10% magnesium sulphate solution was used to immerse the specimens up to a period of 15 weeks during which visual observation, weight changes and strength changes were monitored regularly. Addition of silica fume lowers performance of geopolymer pastes. However, in mortars, addition of silica fume significantly enhanced physico-mechanical properties and durability.

Keywords: Fly ash, silica fume, geopolymer, apparent porosity, sorptivity, compressive strength, durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3657
144 Influence of Silica Fume on High Strength Lightweight Concrete

Authors: H. Katkhuda, B. Hanayneh, N. Shatarat

Abstract:

The main objective of this paper is to determine the isolated effect of silica fume on tensile, compressive and flexure strengths on high strength lightweight concrete. Many experiments were carried out by replacing cement with different percentages of silica fume at different constant water-binder ratio keeping other mix design variables constant. The silica fume was replaced by 0%, 5%, 10%, 15%, 20% and 25% for a water-binder ratios ranging from 0.26 to 0.42. For all mixes, split tensile, compressive and flexure strengths were determined at 28 days. The results showed that the tensile, compressive and flexure strengths increased with silica fume incorporation but the optimum replacement percentage is not constant because it depends on the water–cementitious material (w/cm) ratio of the mix. Based on the results, a relationship between split tensile, compressive and flexure strengths of silica fume concrete was developed using statistical methods.

Keywords: Silica fume, Lightweight, High strength concrete, and Strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3697
143 Effectiveness of Natural Zeolite in Mitigating Alkali Silica Reaction Expansions

Authors: Esma Gizem Daskiran, Mehmet Mustafa Daskiran

Abstract:

This paper investigates the effectiveness of two natural zeolites in reducing expansion of concrete due to alkali-silica reaction. These natural zeolites have different reactive silica content. Three aggregates; two natural sands and one crushed stone aggregate were used while preparing mortar bars in accordance with accelerated mortar bar test method, ASTM C1260. Performances of natural zeolites are compared by examining the expansions due to alkali silica reaction. Natural zeolites added to the mixtures at 10% and 20% replacement levels by weight of cement. Natural zeolite with high reactive silica content had better performance on reducing expansions due to ASR. In this research, using high reactive zeolite at 20% replacement levels was effective in mitigating expansions.

Keywords: Alkali silica reaction, natural zeolite, durability, expansion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2553
142 The Influence of Mineraliser Granulometry on Dense Silica Brick Microstructure

Authors: L. Nevrivova, K. Lang, M. Kotoucek, D. Vsiansky

Abstract:

This entry concerned with dense silica bricks microstructure was produced as a part of a project within the Technology Agency of the Czech Republic which is being implemented in cooperation of the biggest producer of refractories the P-D Refractories CZ company with the research organisation Brno University of Technology. The paper is focused on the influence of mixture homogenisation and the influence of grain size of the mineraliser on the resulting utility properties of the material as well as its microstructure. It has a decisive influence on the durability of the material in a building structure. This paper is a continuation of a previously published study dealing with the suitability of various types of mineralising agents in terms of density, strength and mineral composition of silica brick. The entry describes the influence of the method of mixture homogenisation and the influence of granulometry of the applied Femineralising agent on the resulting silica microstructure. Porosity, density, phase composition and microstructure of the experimentally prepared silica bricks samples were examined and the results were discussed in context with the technology of homogenisation and firing temperature used. The properties of silica bricks samples were compared to the sample without any Fe-mineraliser.

Keywords: Silica bricks, Fe-mineraliser, mineralogical composition, new developed silica bricks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
141 The Improvement of 28-day Compressive Strength of Self Compacting Concrete Made by Different Percentages of Recycled Concrete Aggregates using Nano-Silica

Authors: S. Salkhordeh, P. Golbazi, H. Amini

Abstract:

In this study two series of self compacting concrete mixtures were prepared with 100% coarse recycled concrete aggregates and different percentages of 0%, 20%, 40%, 60%, 80% and 100% fine recycled concrete aggregates. In series I and II the water to binder ratios were 0.50 and 0.45, respectively. The cement content was kept 350 3 m kg for those mixtures that don't have any Nano-Silica. To improve the compressive strength of samples, Nano- Silica replaced with 10% of cement weight in concrete mixtures. By doing the tests, the results showed that, adding Nano-silica to the samples with less percentage of fine recycled concrete aggregates, lead to more increase on the compressive strength.

Keywords: Compressive Strength, Nano-Silica, RecycledConcrete Aggregates, Self Compacting Concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
140 Adsorption Kinetics of Alcohols over MCM-41 Materials

Authors: Farouq Twaiq, Mustafa Nasser, Siham Al-Hajri, Mansoor Al-Hasani

Abstract:

Adsorption of methanol and ethanol over mesoporous siliceous material are studied in the current paper. The pure mesoporous silica is prepared using tetraethylorthosilicate (TEOS) as silica source and dodecylamine as template at low pH. The prepared material was characterized using nitrogen adsorption,nX-ray diffraction (XRD) and scanning electron microscopy (SEM). The adsorption kinetics of methanol and ethanol from aqueous solution were studied over the prepared mesoporous silica material. The percent removal of alcohol was calculated per unit mass of adsorbent used. The 1st order model is found to be in agreement with both adsorbates while the 2nd order model fit the adsorption of methanol only.

Keywords: Adsorption, Kinetics, Mesoprous silica, Methanol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169
139 Improvement of Chemical Demulsifier Performance Using Silica Nanoparticles

Authors: G. E. Gandomkar, E. Bekhradinassab, S. Sabbaghi, M. M. Zerafat

Abstract:

The reduction of water content in crude oil emulsions reduces pipeline corrosion potential and increases the productivity. Chemical emulsification of crude oil emulsions is one of the methods available to reduce the water content. Presence of demulsifier causes the film layer between the crude oil emulsion and water droplets to become unstable leading to the acceleration of water coalescence. This research has been performed to study the improvement performance of a chemical demulsifier by silica nanoparticles. The silica nano-particles have been synthesized by sol-gel technique and precipitation using poly vinyl alcohol (PVA) and poly ethylene glycol (PEG) as surfactants and then nano-particles are added to the demulsifier. The silica nanoparticles were characterized by Particle Size Analyzer (PSA) and SEM. Upon the addition of nanoparticles, bottle tests have been carried out to separate and measure the water content. The results show that silica nano-particles increase the demulsifier efficiency by about 40%.

Keywords: Demulsifier, dehydration, silicon dioxide, nanoparticle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
138 Comparison of Physical and Chemical Properties of Micro-Silica and Locally Produced Metakaolin and Effect on the Properties of Concrete

Authors: S. U. Khan, T. Ayub, N. Shafiq

Abstract:

The properties of locally produced metakaolin (MK) as cement replacing material and the comparison of reactivity with commercially available micro-silica have been investigated. Compressive strength, splitting tensile strength, and load-deflection behaviour under bending are the properties that have been studied. The amorphous phase of MK with micro-silica was compared through X-ray diffraction (XRD) pattern. Further, interfacial transition zone of concrete with micro-silica and MK was observed through Field Emission Scanning Electron Microscopy (FESEM). Three mixes of concrete were prepared. One of the mix is without cement replacement as control mix, and the remaining two mixes are 10% cement replacement with micro-silica and MK. It has been found that MK, due to its irregular structure and amorphous phase, has high reactivity with portlandite in concrete. The compressive strength at early age is higher with MK as compared to micro-silica. MK concrete showed higher splitting tensile strength and higher load carrying capacity as compared to control and micro-silica concrete at all ages respectively.

Keywords: Metakaolin, compressive strength, splitting tensile strength, load deflection, interfacial transition zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
137 Comparing the Durability of Saudi Silica Sands for Use in Foundry Processing

Authors: Mahdi Alsagour, Sam Ramrattan

Abstract:

This paper was developed to investigate two types of sands from the Kingdom of Saudi Arabia (KSA) for potential use in the global metal casting industry. Four types of sands were selected for study, two of the sand systems investigated are natural sands from the KSA. The third sand sample is a heat processed synthetic sand and the last sample is commercially available US silica sand that is used as a control in the study. The purpose of this study is to define the durability of the four sand systems selected for foundry usage. Additionally, chemical analysis of the sand systems is presented before and after elevated temperature exposure. Results show that Saudi silica sands are durable and can be used in foundry processing.

Keywords: Alternative molding media, foundry sand, reclamation, silica sand, specialty sand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 684
136 Study of Water on the Surface of Nano-Silica Material: An NMR Study

Authors: J. Hassan

Abstract:

Water 2H NMR signal on the surface of nano-silica material, MCM-41, consists of two overlapping resonances. The 2H water spectrum shows a superposition of a Lorentzian line shape and the familiar NMR powder pattern line shape, indicating the existence of two spin components. Chemical exchange occurs between these two groups. Decomposition of the two signals is a crucial starting point for study the exchange process. In this article we have determined these spin component populations along with other important parameters for the 2H water NMR signal over a temperature range between 223 K and 343 K.

Keywords: Nano-Silica, surface water, NMR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
135 Effects of Humidity and Silica Sand Particles on Vibration Generation by Friction Materials of Automotive Brake System

Authors: Mostafa M. Makrahy, Nouby M. Ghazaly, G. T. Abd el-Jaber

Abstract:

This paper presents the experimental study of vibration generated by friction materials of an automotive disc brake system using brake test rig. Effects of silica sand particles which are available on the road surface as an environmental condition with a size varied from 150 μm to 600 μm are evaluated. Also, the vibration of the brake disc is examined against the friction material in humidity environment conditions under variable rotational speed. The experimental results showed that the silica sand particles have significant contribution on the value of vibration amplitude which enhances with increasing the size of silica sand particles at different speed conditions. Also, it is noticed that the friction material is sensitive to humidity and the vibration magnitude increases under wet testing conditions. Moreover, it can be reported that with increasing the applied pressure and rotational speed of the braking system, the vibration amplitudes decrease for all cases.

Keywords: Friction material, silica sand particles, humidity environment, vibration of brake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 754
134 Study of Electro-Optical Properties of ZnS Nanoparticles Prepared by Colloidal Particles Method

Authors: A. Rahdar, V. Arbabi, H. Ghanbari

Abstract:

ZnS nanoparticles of different size have been synthesized using a colloidal particles method. Zns nanoparticles prepared with capping agent (mercaptoethanol) then were characterized using X-ray diffraction (XRD) and UV-Vis spectroscopy. The particle size of the nanoparticles calculated from the XRD patterns has been found in the range 1.85-2.44nm. Absorption spectra have been obtained using UV-Vis spectrophotometer to find the optical band gap and the obtained values have been founded to being range 3.83-4.59eV. It was also found that energy band gap increase with the increase in molar capping agent solution.

Keywords: ZnS, Nanoparticle, X-ray.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
133 Effect of Silica Fume on the Properties of Steel-Fiber Reinforced Self-compacting Concrete

Authors: Ahmed Fathi Mohamed, Nasir Shafiq, M. F. Nuruddin, Ali Elheber

Abstract:

Implementing significant advantages in the supply of self-compacting concrete (SCC) is necessary because of the, negative features of SCC. Examples of these features are the ductility problem along with the very high cost of its constituted materials. Silica fume with steel fiber can fix this matter by improving the ductility and decreasing the total cost of SCC by varying the cement ingredients. Many different researchers have found that there have not been enough research carried out on the steel fiber-reinforced self-compacting concrete (SFRSCC) produced with silica fume. This paper inspects both the fresh and the mechanical properties of SFRSCC with silica fume, the fresh qualities where slump flow, slump T50 and V- funnel. While, the mechanical characteristics were the compressive strength, ultrasound pulse velocity (UPV) and elastic modulus of the concrete samples. The experimental results have proven that steel fiber can enhance the mechanical features. In addition, the silica fume within the entire hybrid mix may possibly adapt the fiber dispersion and strengthen deficits due to the fibers. It could also improve the strength plus the bond between the fiber and the matrix with a dense calcium silicate-hydrate gel in SFRSCC. The concluded result was predicted using linear mathematical models and was found to be in great agreement with the experimental results.

Keywords: Self-compacting concrete, silica fume, steel fiber, fresh and mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3224
132 Preparation and Physical Assessment of Portland Cement Base Composites Containing Nano Particles

Authors: Amir Mahmoudi

Abstract:

In this research the effects of adding silica and alumina nanoparticles on flow ability and compressive strength of cementitious composites based on Portland cement were investigated. In the first stage, the rheological behavior of different samples containing nanosilica, nanoalumina and polypropylene, polyvinyl alcohol and polyethylene fibers were evaluated. With increasing of nanoparticles in fresh samples, the slump flow diameter reduced. Fibers reduced the flow ability of the samples and viscosity increased. With increasing of the micro silica particles to cement ratio from 2/1 to 2/2, the slump flow diameter increased. By adding silica and alumina nanoparticles up to 3% and 2% respectively, the compressive strength increased and after decreased. Samples containing silica nanoparticles and fibers had the highest compressive strength.

Keywords: Portland cement, Composite, Nanoparticles, Compressive Strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
131 The Manufacturing of Metallurgical Grade Silicon from Diatomaceous Silica by an Induction Furnace

Authors: Shahrazed Medeghri, Saad Hamzaoui, Mokhtar Zerdali

Abstract:

The metallurgical grade silicon (MG-Si) is obtained from the reduction of silica (SiO2) in an induction furnace or an electric arc furnace. Impurities inherent in reduction process also depend on the quality of the raw material used. Among the applications of the silicon, it is used as a substrate for the photovoltaic conversion of solar energy and this conversion is wider as the purity of the substrate is important. Research is being done where the purpose is looking for new methods of manufacturing and purification of silicon, as well as new materials that can be used as substrates for the photovoltaic conversion of light energy. In this research, the technique of production of silicon in an induction furnace, using a high vacuum for fusion. Diatomaceous Silica (SiO2) used is 99 mass% initial purities, the carbon used is 6N of purity and the particle size of 63μm as starting materials. The final achieved purity of the material was above 50% by mass. These results demonstrate that this method is a technically reliable, and allows obtaining a better return on the amount 50% of silicon.

Keywords: Induction, amorphous silica, carbon microstructure, silicon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
130 Thermal Expansion Coefficient and Young’s Modulus of Silica-Reinforced Epoxy Composite

Authors: Hyu Sang Jo, Gyo Woo Lee

Abstract:

In this study, the evaluation of thermal stability of the micrometer-sized silica particle reinforced epoxy composite was carried out through the measurement of thermal expansion coefficient and Young’s modulus of the specimens. For all the specimens in this study from the baseline to those containing 50 wt% silica filler, the thermal expansion coefficients and the Young’s moduli were gradually decreased down to 20% and increased up to 41%, respectively. The experimental results were compared with fillervolume- based simple empirical relations. The experimental results of thermal expansion coefficients correspond with those of Thomas’s model which is modified from the rule of mixture. However, the measured result for Young’s modulus tends to be increased slightly. The differences in increments of the moduli between experimental and numerical model data are quite large.

Keywords: Thermal Stability, Silica-Reinforced, Epoxy Composite, Coefficient of Thermal Expansion, Empirical Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4776
129 Effect of Evaporator Temperature on the Performance of Water Desalination/Refrigeration Adsorption System Using AQSOA-ZO2

Authors: Peter G. Youssef, Saad M. Mahmoud, Raya K. Al-Dadah

Abstract:

Many water desalination technologies have been developed but in general they are energy intensive and have high cost and adverse environmental impact. Recently, adsorption technology for water desalination has been investigated showing the potential of using low temperature waste heat (50-85oC) thus reducing energy consumption and CO2 emissions. This work mathematically compares the performance of an adsorption cycle that produces two useful effects namely, fresh water and cooling using two different adsorbents, silica-gel and an advanced zeolite material AQSOA-ZO2, produced by Mitsubishi plastics. It was found that at low chilled water temperatures, typically below 20oC, the AQSOA-Z02 is more efficient than silica-gel as the cycle can produce 5.8 m3 of fresh water per day and 50.1 Rton of cooling per tonne of AQSOA-ZO2. Above 20oC silica-gel is still better as the cycle production reaches 8.4 m3 per day and 62.4 Rton per tonne of silica-gel. These results show the potential of using the AQSOA-Z02 at low chilled water temperature for water desalination and cooling applications.

Keywords: Adsorption, desalination, refrigeration, seawater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436
128 Anticorrosive Polyurethane Clear Coat with Self-Cleaning Character

Authors: Nihit Madireddi, P. A. Mahanwar

Abstract:

We have aimed to produce a self-cleaning transparent polymer coating with polyurethane (PU) matrix as the latter is highly solvent, chemical and weather resistant having good mechanical properties. Nano-silica modified by 1H, 1H, 2H, 2Hperflurooctyltriethoxysilane was incorporated into the PU matrix for attaining self-cleaning ability through hydrophobicity. The modification was confirmed by particle size analysis and scanning electron microscopy (SEM). Thermo-gravimetric (TGA) studies were carried to ascertain the grafting of silane onto the silica. Several coating formulations were prepared by varying the silica loading content and compared to a commercial equivalent. The effect of dispersion and the morphology of the coated films were assessed by SEM analysis. All coating standardized tests like solvent resistance, adhesion, flexibility, acid, alkali, gloss etc. have been performed as per ASTM standards. Water contact angle studies were conducted to analyze the hydrophobic character of the coating. In addition, the coatings were also subjected to salt spray and accelerated weather testing to analyze the durability of the coating.

Keywords: FAS, nano-silica, PU clear coat, self-cleaning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
127 Mechanical Properties of Cement Slurry by Partially Substitution of Industry Waste Natural Pozzolans

Authors: R. Ziaie Moayed, S. P. Emadoleslami Oskoei, S. D. Beladi Mousavi, A. Taleb Beydokhti

Abstract:

There have been many reports of the destructive effects of cement on the environment in recent years. In the present research, it has been attempted to reduce the destructive effects of cement by replacing silica fume as adhesive materials instead of cement. The present study has attempted to improve the mechanical properties of cement slurry by using waste material from a glass production factory, located in Qazvin city of Iran, in which accumulation volume has become an environmental threat. The chemical analysis of the waste material indicates that this material contains about 94% of SiO2 and AL2O3 and has a close structure to silica fume. Also, the particle grain size test was performed on the mentioned waste. Then, the unconfined compressive strength test of the slurry was performed by preparing a mixture of water and adhesives with different percentages of cement and silica fume. The water to an adhesive ratio of this mixture is 1:3, and the curing process last 28 days. It was found that the sample had an unconfined compressive strength of about 300 kg/cm2 in a mixture with equal proportions of cement and silica fume. Besides, the sample had a brittle fracture in the slurry sample made of pure cement, however, the fracture in cement-silica fume slurry mixture is flexible and the structure of the specimen remains coherent after fracture. Therefore, considering the flexibility that is achieved by replacing this waste, it can be used to stabilize soils with cracking potential.

Keywords: Cement replacement, cement slurry, environmental threat, natural pozzolan, silica fume, waste material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 617
126 Gas Permeation Behavior of Single and Mixed Gas Components Using an Asymmetric Ceramic Membrane

Authors: Ngozi Nwogu, Edward Gobina

Abstract:

A dip-coating process has been used to form an asymmetric silica membrane with improved membrane performance and reproducibility. First, we deposited repeatedly silica on top of a commercial alumina membrane support to improve its structural make up. The membrane is further processed under clean room conditions to avoid dust impurity and subsequent drying in an oven for high thermal, chemical and physical stability. The resulting asymmetric membrane exhibits a gradual change in the membrane layer thickness. Compared to the support, the dual-layer process improves the gas flow rates. For the scientific applications for natural gas purification, CO2, CH4 and H2 gas flow rates were. In addition, the membrane selectively separated hydrogen.

Keywords: Gas permeation, Silica membrane, separation factor, membrane layer thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2341
125 Prediction of Post Underwater Shock Properties of Polymer - Clay/Silica Hybrid Nanocomposites through Regression Models

Authors: D. Lingaraju, K. Ramji, M. Pramiladevi, U. Rajyalakshmi

Abstract:

Exploding concentrated underwater charges to damage underwater structures such as ship hulls is a part of naval warfare strategies. Adding small amounts of foreign particles (like clay or silica) of nanosize significantly improves the engineering properties of the polymers. In the present work the clay in terms 1, 2 and 3 percent by weight was surface treated with a suitable silane agent. The hybrid nanocomposite was prepared by the hand lay-up technique. Mathematical regression models have been employed for theoretical prediction. This will result in considerable savings in terms of project time, effort and cost.

Keywords: ANOVA, clay, halloysite, nanocomposites, underwater shock, regression, silica.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
124 Unconfined Strength of Nano Reactive Silica Sand Powder Concrete

Authors: Hossein Kabir, Mojtaba Sadeghi

Abstract:

Nowadays, high-strength concrete is an integral element of a variety of high-rise buildings. On the other hand, finding a suitable aggregate size distribution is a great concern; hence, the concrete mix proportion is presented that has no coarse aggregate, which still withstands enough desirable strength. Nano Reactive Silica sand powder concrete (NRSSPC) is a type of concrete with no coarse material in its own composition. In this concrete, the only aggregate found in the mix design is silica sand powder with a size less than 150 mm that is infinitesimally small regarding the normal concrete. The research aim is to find the compressive strength of this particular concrete under the applied different conditions of curing and consolidation to compare the approaches. In this study, the young concrete specimens were compacted with a pressing or vibrating process. It is worthwhile to mention that in order to show the influence of temperature in the curing process, the concrete specimen was cured either in 20 ⁰C lime water or autoclaved in 90 ⁰C oven.

Keywords: Nano reactive silica sand powder concrete, consolidation, compressive strength, normal curing, thermal accelerated curing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323