Search results for: voltage instability
849 A Practical Method for Load Balancing in the LV Distribution Networks Case Study: Tabriz Electrical Network
Authors: A. Raminfard, S. M. Shahrtash
Abstract:
In this paper, a new efficient method for load balancing in low voltage distribution systems is presented. The proposed method introduces an improved Leap-frog method for optimization. The proposed objective function includes the difference between three phase currents, as well as two other terms to provide the integer property of the variables; where the latter are the status of the connection of loads to different phases. Afterwards, a new algorithm is supplemented to undertake the integer values for the load connection status. Finally, the method is applied to different parts of Tabriz low voltage network, where the results have shown the good performance of the proposed method.
Keywords: Load balancing, improved leap-frog method, optimization algorithm, low voltage distribution systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3424848 Comparison of Electrical Parameters of Oil-Immersed and Dry-Type Transformer Using Finite Element Method
Authors: U. Amin, A. Talib, S. A. Qureshi, M. J. Hossain, G. Ahmad
Abstract:
The choice evaluation between oil-immersed and dry-type transformers is often controlled by cost, location, and application. This paper compares the electrical performance of liquid- filled and dry-type transformers, which will assist the customer to choose the right and efficient ones for particular applications. An accurate assessment of the time-average flux density, electric field intensity and voltage distribution in an oil-insulated and a dry-type transformer have been computed and investigated. The detailed transformer modeling and analysis has been carried out to determine electrical parameter distributions. The models of oil-immersed and dry-type transformers are developed and solved by using the finite element method (FEM) to compare the electrical parameters. The effects of non-uniform and non-coherent voltage gradient, flux density and electric field distribution on the power losses and insulation properties of transformers are studied in detail. The results show that, for the same voltage and kilo-volt-ampere (kVA) rating, oil-immersed transformers have better insulation properties and less hysteresis losses than the dry-type.
Keywords: Finite element method, flux density, transformer, voltage gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1233847 Optimal Allocation of DG Units for Power Loss Reduction and Voltage Profile Improvement of Distribution Networks using PSO Algorithm
Authors: K. Varesi
Abstract:
This paper proposes a Particle Swarm Optimization (PSO) based technique for the optimal allocation of Distributed Generation (DG) units in the power systems. In this paper our aim is to decide optimal number, type, size and location of DG units for voltage profile improvement and power loss reduction in distribution network. Two types of DGs are considered and the distribution load flow is used to calculate exact loss. Load flow algorithm is combined appropriately with PSO till access to acceptable results of this operation. The suggested method is programmed under MATLAB software. Test results indicate that PSO method can obtain better results than the simple heuristic search method on the 30-bus and 33- bus radial distribution systems. It can obtain maximum loss reduction for each of two types of optimally placed multi-DGs. Moreover, voltage profile improvement is achieved.Keywords: Distributed Generation (DG), Optimal Allocation, Particle Swarm Optimization (PSO), Power Loss Minimization, Voltage Profile Improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3169846 Gate Voltage Controlled Humidity Sensing Using MOSFET of VO2 Particles
Authors: A. A. Akande, B. P. Dhonge, B. W. Mwakikunga, A. G. J. Machatine
Abstract:
This article presents gate-voltage controlled humidity sensing performance of vanadium dioxide nanoparticles prepared from NH4VO3 precursor using microwave irradiation technique. The X-ray diffraction, transmission electron diffraction, and Raman analyses reveal the formation of VO2 (B) with V2O5 and an amorphous phase. The BET surface area is found to be 67.67 m2/g. The humidity sensing measurements using the patented lateral-gate MOSFET configuration was carried out. The results show the optimum response at 5 V up to 8 V of gate voltages for 10 to 80% of relative humidity. The dose-response equation reveals the enhanced resilience of the gated VO2 sensor which may saturate above 272% humidity. The response and recovery times are remarkably much faster (about 60 s) than in non-gated VO2 sensors which normally show response and recovery times of the order of 5 minutes (300 s).
Keywords: VO2, VO2 (B), V2O5, MOSFET, gate voltage, humidity sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1139845 Adaptive Hysteresis Based SHAF Using PI and FLC Controller for Current Harmonics Mitigation
Authors: Ravit Gautam, Dipen A. Mistry, Manmohan Singh Meena, Bhupelly Dheeraj, Suresh Mikkili
Abstract:
Due to the increased use of the power electronic equipment, harmonics in the power system has increased to a greater extent. These harmonics results a poor power quality causing a major effect on the customers. Shunt active filters (SHAF) are used for the mitigations of the current harmonics and to maintain constant DC link voltage. PI and Fuzzy logic controllers (FLC) were used to control the performance of the shunt active filter under both balance and unbalance source voltage condition. The results found were not satisfying the IEEE-519 standards of THD to be less than 5%. Hysteresis band current control was used to obtain the gating signals for SHAF, though it has some drawbacks and thus to obtain a better performance of the SHAF to mitigate the harmonics, adaptive hysteresis band current control scheme is implemented. Adaptive hysteresis based SHAF is used to obtain better compensation of current harmonics and to regulate the DC link voltage in a better way.
Keywords: DC Link Voltage, Fuzzy Logic Controller, Adaptive Hysteresis, Harmonics, Shunt Active Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531844 Behavioral Modeling Accuracy for RF Power Amplifier with Memory Effects
Authors: Chokri Jebali, Noureddine Boulejfen, Ali Gharsallah, Fadhel M. Ghannouchi
Abstract:
In this paper, a system level behavioural model for RF power amplifier, which exhibits memory effects, and based on multibranch system is proposed. When higher order terms are included, the memory polynomial model (MPM) exhibits numerical instabilities. A set of memory orthogonal polynomial model (OMPM) is introduced to alleviate the numerical instability problem associated to MPM model. A data scaling and centring algorithm was applied to improve the power amplifier modeling accuracy. Simulation results prove that the numerical instability can be greatly reduced, as well as the model precision improved with nonlinear model.Keywords: power amplifier, orthogonal model, polynomialmodel , memory effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278843 Precision Control of Single-Phase PWM Inverter Using M68HC11E Microcontroller
Authors: Khaled A. Madi
Abstract:
Induction motors are being used in greater numbers throughout a wide variety of industrial and commercial applications because it provides many benefits and reliable device to convert the electrical energy into mechanical motion. In some application it-s desired to control the speed of the induction motor. Because of the physics of the induction motor the preferred method of controlling its speed is to vary the frequency of the AC voltage driving the motor. In recent years, with the microcontroller incorporated into an appliance it becomes possible to use it to generate the variable frequency AC voltage to control the speed of the induction motor. This study investigates the microcontroller based variable frequency power inverter. the microcontroller is provide the variable frequency pulse width modulation (PWM) signal that control the applied voltage on the gate drive, which is provides the required PWM frequency with less harmonics at the output of the power inverter. The fully controlled bridge voltage source inverter has been implemented with semiconductors power devices isolated gate bipolar transistor (IGBT), and the PWM technique has been employed in this inverter to supply the motor with AC voltage. The proposed drive system for three & single phase power inverter is simulated using Matlab/Simulink. The Matlab Simulation Results for the proposed system were achieved with different SPWM. From the result a stable variable frequency inverter over wide range has been obtained and a good agreement has been found between the simulation and hardware of a microcontroller based single phase inverter.Keywords: Power, inverter, PWM, microcontroller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4437842 Adaptive Discharge Time Control for Battery Operation Time Enhancement
Authors: Jong-Bae Lee, Seongsoo Lee
Abstract:
This paper proposes an adaptive discharge time control method to balance cell voltages in alternating battery cell discharging method. In the alternating battery cell discharging method, battery cells are periodically discharged in turn. Recovery effect increases battery output voltage while the given battery cell rests without discharging, thus battery operation time of target system increases. However, voltage mismatch between cells leads two problems. First, voltage difference between cells induces inter-cell current with wasted power. Second, it degrades battery operation time, since system stops when any cell reaches to the minimum system operation voltage. To solve this problem, the proposed method adaptively controls cell discharge time to equalize both cell voltages. In the proposed method, battery operation time increases about 19%, while alternating battery cell discharging method shows about 7% improvement.
Keywords: Battery, Recovery Effect, Low-Power, Alternating Battery Cell Discharging, Adaptive Discharge Time Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498841 A Fixed Band Hysteresis Current Controller for Voltage Source AC Chopper
Authors: K. Derradji Belloum, A. Moussi
Abstract:
Most high-performance ac drives utilize a current controller. The controller switches a voltage source inverter (VSI) such that the motor current follows a set of reference current waveforms. Fixed-band hysteresis (FBH) current control has been widely used for the PWM inverter. We want to apply the same controller for the PWM AC chopper. The aims of the controller is to optimize the harmonic content at both input and output sides, while maintaining acceptable losses in the ac chopper and to control in wide range the fundamental output voltage. Fixed band controller has been simulated and analyzed for a single-phase AC chopper and are easily extended to three-phase systems. Simulation confirmed the advantages and the excellent performance of the modulation method applied for the AC chopper.Keywords: AC chopper, Current controller, Distortion factor, Hysteresis, Input Power Factor, PWM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3594840 Generalized Mathematical Description and Simulation of Grid-Tied Thyristor Converters
Authors: V. S. Klimash, Ye Min Thu
Abstract:
Thyristor rectifiers, inverters grid-tied, and AC voltage regulators are widely used in industry, and on electrified transport, they have a lot in common both in the power circuit and in the control system. They have a common mathematical structure and switching processes. At the same time, the rectifier, but the inverter units and thyristor regulators of alternating voltage are considered separately both theoretically and practically. They are written about in different books as completely different devices. The aim of this work is to combine them into one class based on the unity of the equations describing electromagnetic processes, and then, to show this unity on the mathematical model and experimental setup. Based on research from mathematics to the product, a conclusion is made about the methodology for the rapid conduct of research and experimental design work, preparation for production and serial production of converters with a unified bundle. In recent years, there has been a transition from thyristor circuits and transistor in modular design. Showing the example of thyristor rectifiers and AC voltage regulators, we can conclude that there is a unity of mathematical structures and grid-tied thyristor converters.Keywords: Direct current, alternating current, rectifier, AC voltage regulator, generalized mathematical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009839 Numerical Investigation of Electrohydrodynamics: Enhanced Heat Transfer in a Solid Sample
Authors: Suwimon Saneewong Na Ayuttaya
Abstract:
This paper presents a numerical investigation of electrically driven flow for enhancing convective heat transfer in a channel flow. This study focuses on the electrode arrangements, number of electrode and electrical voltage on Electrohydrodynamics (EHD) and effect of airflow driven on solid sample surface. The inlet airflow and inlet temperature are 0.35 m/s and 60 oC, respectively. High electrical voltage is tested in the range of 0-30 kV and number of electrode is tested in the range of 1-5. The numerical results show that electric field intensity is depended on electrical voltage and number of electrode. Increasing number of electrodes is increased shear flow, so swirling flow is increased. The swirling flows from aligned and staggered arrangements are affecting within the solid sample. When electrical voltage is increased, temperature distribution and convective heat transfer on the solid sample are significantly increased due to the electric force much stronger.Keywords: Electrohydrodynamics, swirling flow, convective heat transfer, solid sample.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1086838 Hot Workability of High Strength Low Alloy Steels
Authors: Seok Hong Min, Jung Ho Moon, Woo Young Jung, Tae Kwon Ha
Abstract:
The hot deformation behavior of high strength low alloy (HSLA) steels with different chemical compositions under hot working conditions in the temperature range of 900 to 1100℃ and strain rate range from 0.1 to 10 s-1 has been studied by performing a series of hot compression tests. The dynamic materials model has been employed for developing the processing maps, which show variation of the efficiency of power dissipation with temperature and strain rate. Also the Kumar-s model has been used for developing the instability map, which shows variation of the instability for plastic deformation with temperature and strain rate. The efficiency of power dissipation increased with decreasing strain rate and increasing temperature in the steel with higher Cr and Ti content. High efficiency of power dissipation over 20 % was obtained at a finite strain level of 0.1 under the conditions of strain rate lower than 1 s-1 and temperature higher than 1050 ℃ . Plastic instability was expected in the regime of temperatures lower than 1000 ℃ and strain rate lower than 0.3 s-1. Steel with lower Cr and Ti contents showed high efficiency of power dissipation at higher strain rate and lower temperature conditions.Keywords: High strength low alloys steels, hot workability, Dynamic materials model, Processing maps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019837 A Grid Synchronization Method Based on Adaptive Notch Filter for SPV System with Modified MPPT
Authors: Priyanka Chaudhary, M. Rizwan
Abstract:
This paper presents a grid synchronization technique based on adaptive notch filter for SPV (Solar Photovoltaic) system along with MPPT (Maximum Power Point Tracking) techniques. An efficient grid synchronization technique offers proficient detection of various components of grid signal like phase and frequency. It also acts as a barrier for harmonics and other disturbances in grid signal. A reference phase signal synchronized with the grid voltage is provided by the grid synchronization technique to standardize the system with grid codes and power quality standards. Hence, grid synchronization unit plays important role for grid connected SPV systems. As the output of the PV array is fluctuating in nature with the meteorological parameters like irradiance, temperature, wind etc. In order to maintain a constant DC voltage at VSC (Voltage Source Converter) input, MPPT control is required to track the maximum power point from PV array. In this work, a variable step size P & O (Perturb and Observe) MPPT technique with DC/DC boost converter has been used at first stage of the system. This algorithm divides the dPpv/dVpv curve of PV panel into three separate zones i.e. zone 0, zone 1 and zone 2. A fine value of tracking step size is used in zone 0 while zone 1 and zone 2 requires a large value of step size in order to obtain a high tracking speed. Further, adaptive notch filter based control technique is proposed for VSC in PV generation system. Adaptive notch filter (ANF) approach is used to synchronize the interfaced PV system with grid to maintain the amplitude, phase and frequency parameters as well as power quality improvement. This technique offers the compensation of harmonics current and reactive power with both linear and nonlinear loads. To maintain constant DC link voltage a PI controller is also implemented and presented in this paper. The complete system has been designed, developed and simulated using SimPower System and Simulink toolbox of MATLAB. The performance analysis of three phase grid connected solar photovoltaic system has been carried out on the basis of various parameters like PV output power, PV voltage, PV current, DC link voltage, PCC (Point of Common Coupling) voltage, grid voltage, grid current, voltage source converter current, power supplied by the voltage source converter etc. The results obtained from the proposed system are found satisfactory.
Keywords: Solar photovoltaic systems, MPPT, voltage source converter, grid synchronization technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970836 Dielectric Recovery Characteristics of High Voltage Gas Circuit Breakers Operating with CO2 Mixture
Authors: Peng Lu, Branimir Radisavljevic, Martin Seeger, Daniel Over, Torsten Votteler, Bernardo Galletti
Abstract:
CO₂-based gas mixtures exhibit huge potential as the interruption medium for replacing SF₆ in high voltage switchgears. In this paper, the recovery characteristics of dielectric strength of CO₂-O₂ mixture in the post arc phase after the current zero are presented. As representative examples, the dielectric recovery curves under conditions of different gas filling pressures and short-circuit current amplitudes are presented. A series of dielectric recovery measurements suggests that the dielectric recovery rate is proportional to the mass flux of the blowing gas, and the dielectric strength recovers faster in the case of lower short circuit currents.
Keywords: CO2 mixture, high voltage circuit breakers, dielectric recovery rate, short-circuit current, mass flux.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 475835 Seasonal Based Pollution Performance of 11kV and 33kV Silicon Composite Insulators
Authors: N. Sumathi, R. Srinivasa Rao
Abstract:
This paper presents the experimental results of 11 kV and 33 kV silicon composite insulators under artificial salt and urea polluted conditions. The tests were carried out under different seasons like summer, winter, and monsoon. The artificial pollution is prepared by properly dissolving the salt and urea in the water. The prepared salt and urea pollutions are sprayed on the insulators and dried up for sufficiently large time. The process is continued until a uniform layer is formed on the surface of insulator. For each insulator rating, four samples were tested. The maximum leakage current and breakdown voltage were measured. From experimental data, performance of test specimen is evaluated by comparing breakdown voltage and leakage current during different seasons when exposed to salt and urea polluted conditions. From these results the performance of the insulators can be predicted when they are installed in industrial, agricultural, and coastal areas. The experimental tests were carried out in the High Voltage laboratory using two stage cascade transformer having the rating of 1000 kVA, 500 kV.Keywords: Silicon composite insulators, Urea pollution, Leakage current, Breakdown voltage, salt pollution, artificial pollution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875834 A New Empirical Expression of the Breakdown Voltage for Combined Variations of Temperature and Pressure
Authors: Elyse Sili, Jean Pascal Cambronne
Abstract:
In aircraft applications, according to the nature of electrical equipment its location may be in unpressurized area or very close to the engine; thus, the environmental conditions may change from atmospheric pressure to less than 100 mbar, and the temperature may be higher than the ambient one as in most real working conditions of electrical equipment. Then, the classical Paschen curve has to be replotted since these parameters may affect the discharge ignition voltage. In this paper, we firstly investigate the domain of validity of two corrective expressions on the Paschen-s law found in the literature, in case of changing the air environment and known as Peek and Dunbar corrections. Results show that these corrections are no longer valid for combined variation of temperature and pressure. After that, a new empirical expression for breakdown voltage is proposed and is validated in the case of combined variations of temperature and pressure.Keywords: Gas breakdown, gas density, Paschen curve, temperature effects
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4896833 Recent Advances in Pulse Width Modulation Techniques and Multilevel Inverters
Authors: Satish Kumar Peddapelli
Abstract:
This paper presents advances in pulse width modulation techniques which refers to a method of carrying information on train of pulses and the information be encoded in the width of pulses. Pulse Width Modulation is used to control the inverter output voltage. This is done by exercising the control within the inverter itself by adjusting the ON and OFF periods of inverter. By fixing the DC input voltage we get AC output voltage. In variable speed AC motors the AC output voltage from a constant DC voltage is obtained by using inverter. Recent developments in power electronics and semiconductor technology have lead improvements in power electronic systems. Hence, different circuit configurations namely multilevel inverters have became popular and considerable interest by researcher are given on them. A fast space-vector pulse width modulation (SVPWM) method for five-level inverter is also discussed. In this method, the space vector diagram of the five-level inverter is decomposed into six space vector diagrams of three-level inverters. In turn, each of these six space vector diagrams of three-level inverter is decomposed into six space vector diagrams of two-level inverters. After decomposition, all the remaining necessary procedures for the three-level SVPWM are done like conventional two-level inverter. The proposed method reduces the algorithm complexity and the execution time. It can be applied to the multilevel inverters above the five-level also. The experimental setup for three-level diode-clamped inverter is developed using TMS320LF2407 DSP controller and the experimental results are analyzed.
Keywords: Five-level inverter, Space vector pulse wide modulation, diode clamped inverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7771832 Design and Characterization of a CMOS Process Sensor Utilizing Vth Extractor Circuit
Authors: Rohana Musa, Yuzman Yusoff, Chia Chieu Yin, Hanif Che Lah
Abstract:
This paper presents the design and characterization of a low power Complementary Metal Oxide Semiconductor (CMOS) process sensor. The design is targeted for implementation using Silterra’s 180 nm CMOS process technology. The proposed process sensor employs a voltage threshold (Vth) extractor architecture for detection of variations in the fabrication process. The process sensor generates output voltages in the range of 401 mV (fast-fast corner) to 443 mV (slow-slow corner) at nominal condition. The power dissipation for this process sensor is 6.3 µW with a supply voltage of 1.8V with a silicon area of 190 µm X 60 µm. The preliminary result of this process sensor that was fabricated indicates a close resemblance between test and simulated results.Keywords: CMOS Process sensor, Process, Voltage and Temperature (PVT) sensor, threshold extractor circuit, Vth extractor circuit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 757831 Voltage Stability Enhancement Using Cat Swarm Optimization Algorithm
Authors: P. Suryakumari, P. Kantarao
Abstract:
Optimal Power Flow (OPF) problem in electrical power system is considered as a static, non-linear, multi-objective or a single objective optimization problem. This paper presents an algorithm for solving the voltage stability objective reactive power dispatch problem in a power system .The proposed approach employs cat swarm optimization algorithm for optimal settings of RPD control variables. Generator terminal voltages, reactive power generation of the capacitor banks and tap changing transformer setting are taken as the optimization variables. CSO algorithm is tested on standard IEEE 30 bus system and the results are compared with other methods to prove the effectiveness of the new algorithm. As a result, the proposed method is the best for solving optimal reactive power dispatch problem.
Keywords: RPD problem, voltage stability enhancement, CSO algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2438830 Zero Voltage Switched Full Bridge Converters for the Battery Charger of Electric Vehicle
Authors: Rizwan Ullah, Abdar Ali, Zahid Ullah
Abstract:
This paper illustrates the study of three isolated zero voltage switched (ZVS) PWM full bridge (FB) converters to charge the high voltage battery in the charger of electric vehicle (EV). EV battery chargers have several challenges such as high efficiency, high reliability, low cost, isolation, and high power density. The cost of magnetic and filter components in the battery charger is reduced when switching frequency is increased. The increase in the switching frequency increases switching losses. ZVS is used to reduce switching losses and to operate the converter in the battery charger at high frequency. The performance of each of the three converters is evaluated on the basis of ZVS range, dead times of the switches, conduction losses of switches, circulating current stress, circulating energy, duty cycle loss, and efficiency. The limitations and merits of each PWM FB converter are reviewed. The converter with broader ZVS range, high efficiency and low switch stresses is selected for battery charger applications in EV.Keywords: Electric vehicle, PWM FB converter, zero voltage switching, circulating energy, duty cycle loss, battery charger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2430829 An Hybrid Approach for Loss Reduction in Distribution Systems using Harmony Search Algorithm
Authors: R. Srinivasa Rao
Abstract:
Individually Network reconfiguration or Capacitor control perform well in minimizing power loss and improving voltage profile of the distribution system. But for heavy reactive power loads network reconfiguration and for heavy active power loads capacitor placement can not effectively reduce power loss and enhance voltage profiles in the system. In this paper, an hybrid approach that combine network reconfiguration and capacitor placement using Harmony Search Algorithm (HSA) is proposed to minimize power loss reduction and improve voltage profile. The proposed approach is tested on standard IEEE 33 and 16 bus systems. Computational results show that the proposed hybrid approach can minimize losses more efficiently than Network reconfiguration or Capacitor control. The results of proposed method are also compared with results obtained by Simulated Annealing (SA). The proposed method has outperformed in terms of the quality of solution compared to SA.Keywords: Capacitor Control, Network Reconfiguration, HarmonySearch Algorithm, Loss Reduction, Voltage Profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168828 Stable Delta-Sigma Modulator with Signal Dependent Forward Path Gain for Industrial Applications
Authors: K. Diwakar, K. Aanandha Saravanan, C. Senthilpari
Abstract:
Higher order ΔΣ Modulator (DSM) is basically an unstable system. The approximate conditions for stability cannot be used for the design of a DSM for industrial applications where risk is involved. The existing second order, single stage, single bit, unity feedback gain , discrete DSM cannot be used for the normalized full range (-1 to +1) of an input signal since the DSM becomes unstable when the input signal is above ±0.55. The stability is also not guaranteed for input signals of amplitude less than ±0.55. In the present paper, the above mentioned second order DSM is modified with input signal dependent forward path gain. The proposed DSM is suitable for industrial applications where one needs the digital representation of the analog input signal, during each sampling period. The proposed DSM can operate almost for the full range of input signals (-0.95 to +0.95) without causing instability, assuming that the second integrator output should not exceed the circuit supply voltage, ±15 Volts.
Keywords: DSM, stability, SNR, state variables.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588827 Space-Vector PWM Inverter Feeding a Permanent-Magnet Synchronous Motor
Authors: A. Maamoun, Y. M. Alsayed, A. Shaltout
Abstract:
The paper presents a space-vector pulse width modulation (SVPWM) inverter feeding a permanent-magnet synchronous motor (PMSM). The SVPWM inverter enables to feed the motor with a higher voltage with low harmonic distortions than the conventional sinusoidal PWM inverter. The control strategy of the inverter is the voltage / frequency control method, which is based on the space-vector modulation technique. The proposed PMSM drive system involving the field-oriented control scheme not only decouples the torque and flux which provides faster response but also makes the control task easy. The performance of the proposed drive is simulated. The advantages of the proposed drive are confirmed by the simulation results.
Keywords: permanent-magnet synchronous motor, space-vectorPWM inverter, voltage/frequency control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6701826 Determination of the Optimal DG PV Interconnection Location Using Losses and Voltage Regulation as Assessment Indicators Case Study: ECG 33 kV Sub-Transmission Network
Authors: Ekow A. Kwofie, Emmanuel K. Anto, Godfred Mensah
Abstract:
In this paper, CYME Distribution software has been used to assess the impacts of solar Photovoltaic (PV) distributed generation (DG) plant on the Electricity Company of Ghana (ECG) 33 kV sub-transmission network at different PV penetration levels. As ECG begins to encourage DG PV interconnections within its network, there has been the need to assess the impacts on the sub-transmission losses and voltage contribution. In Tema, a city in Accra - Ghana, ECG has a 33 kV sub-transmission network made up of 20 No. 33 kV buses that was modeled. Three different locations were chosen: The source bus, a bus along the sub-transmission radial network and a bus at the tail end to determine the optimal location for DG PV interconnection. The optimal location was determined based on sub-transmission technical losses and voltage impact. PV capacities at different penetration levels were modeled at each location and simulations performed to determine the optimal PV penetration level. Interconnection at a bus along (or in the middle of) the sub-transmission network offered the highest benefits at an optimal PV penetration level of 80%. At that location, the maximum voltage improvement of 0.789% on the neighboring 33 kV buses and maximum loss reduction of 6.033% over the base case scenario were recorded. Hence, the optimal location for DG PV integration within the 33 kV sub-transmission utility network is at a bus along the sub-transmission radial network.
Keywords: Distributed generation photovoltaic, DG PV, optimal location, penetration level, sub-transmission network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320825 A Grid Current-controlled Inverter with Particle Swarm Optimization MPPT for PV Generators
Authors: Hanny H. Tumbelaka, Masafumi Miyatake
Abstract:
This paper proposes a three-phase four-wire currentcontrolled Voltage Source Inverter (CC-VSI) for both power quality improvement and PV energy extraction. For power quality improvement, the CC-VSI works as a grid current-controlling shunt active power filter to compensate for harmonic and reactive power of loads. Then, the PV array is coupled to the DC bus of the CC-VSI and supplies active power to the grid. The MPPT controller employs the particle swarm optimization technique. The output of the MPPT controller is a DC voltage that determines the DC-bus voltage according to PV maximum power. The PSO method is simple and effective especially for a partially shaded PV array. From computer simulation results, it proves that grid currents are sinusoidal and inphase with grid voltages, while the PV maximum active power is delivered to loads.Keywords: Active Power Filter, MPPT, PV Energy Conversion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156824 A Simple Method for Tracing PV Curve of a Radial Transmission Line
Authors: Asfar Ali Khan
Abstract:
Analytical expression for maximum power transfer through a transmission line limited by voltage stability has been formulated using exact representation of transmission line with ABCD parameters. The expression has been used for plotting PV curve at different power factors of a radial transmission line. Limiting values of reactive power have been obtained.Keywords: Power Transfer, PV Curve, Voltage Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3318823 Analysis of Resistance Characteristics of Conductive Concrete Using Press-Electrode Method
Authors: Chun-Yao Lee, Siang-Ren Wang
Abstract:
This paper aims to discuss the influence of resistance characteristic on the high conductive concrete considering the changes of voltage and environment. The high conductive concrete with appropriate proportion is produced to the press-electrode method. The curve of resistivity with the changes of voltage and environment is plotted and the changes of resistivity are explored.Keywords: conductive concrete, resistivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577822 A Linear Relation for Voltage Unbalance Factor Evaluation in Three-Phase Electrical Power System Using Space Vector
Authors: Dana M. Ragab, Jasim A Ghaeb
Abstract:
The Voltage Unbalance Factor (VUF) index is recommended to evaluate system performance under unbalanced operation. However, its calculation requires complex algebra which limits its use in the field. Furthermore, one system cycle is required at least to detect unbalance using the VUF. Ideally unbalance mitigation must be performed within 10 ms for 50 Hz systems. In this work, a linear relation for VUF evaluation in three-phase electrical power system using space vector (SV) is derived. It is proposed to determine the voltage unbalance quickly and accurately and to overcome the constraints associated with the traditional methods of VUF evaluation. Aqaba-Qatrana-South Amman (AQSA) power system is considered to study the system performance under unbalanced conditions. The results show that both the complexity of calculations and the time required to evaluate VUF are reduced significantly.
Keywords: Power quality, space vector, unbalance evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942821 Characterization of Responsivity, Sensitivity and Spectral Response in Thin Film SOI photo-BJMOS -FET Compatible with CMOS Technology
Authors: Hai-Qing Xie, Yun Zeng, Yong-Hong Yan, Jian-Ping Zeng, Tai-Hong Wang
Abstract:
Photo-BJMOSFET (Bipolar Junction Metal-Oxide- Semiconductor Field Effect Transistor) fabricated on SOI film was proposed. ITO film is adopted in the device as gate electrode to reduce light absorption. Depletion region but not inversion region is formed in film by applying gate voltage (but low reverse voltage) to achieve high photo-to-dark-current ratio. Comparisons of photoelectriccharacteristics executed among VGK=0V, 0.3V, 0.6V, 0.9V and 1.0V (reverse voltage VAK is equal to 1.0V for total area of 10×10μm2). The results indicate that the greatest improvement in photo-to-dark-current ratio is achieved up to 2.38 at VGK=0.6V. In addition, photo-BJMOSFET is compatible with CMOS integration due to big input resistanceKeywords: Photo-BJMOSFET, Responsivity, Sensitivity, Spectral response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539820 Simulating Voltage Sag Using PSCAD Software
Authors: Kang Chia Yang, Hushairi HJ Zen, Nur Ikhmar@Najemeen Binti Ayob
Abstract:
Power quality is used to describe the degree of consistency of electrical energy expected from generation source to point of use. The term power quality refers to a wide variety of electromagnetic phenomena that characterize the voltage and current at a given time and at a given location on the power system. Power quality problems can be defined as problem that results in failure of customer equipments, which manifests itself as an economic burden to users, or produces negative impacts on the environment. Voltage stability, power factor, harmonics pollution, reactive power and load unbalance are some of the factors that affect the consistency or the quality level. This research proposal proposes to investigate and analyze the causes and effects of power quality to homes and industries in Sarawak. The increasing application of electronics equipment used in the industries and homes has caused a big impact on the power quality. Many electrical devices are now interconnected to the power network and it can be observed that if the power quality of the network is good, then any loads connected to it will run smoothly and efficiently. On the other hand, if the power quality of the network is bad, then loads connected to it will fail or may cause damage to the equipments and reduced its lifetime. The outcome of this research will enable better and novel solutions of poor power quality to small industries and reduce damage of electrical devices and products in the industries.
Keywords: Power quality, power network, voltage dip.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4347