{"title":"Behavioral Modeling Accuracy for RF Power Amplifier with Memory Effects","authors":"Chokri Jebali, Noureddine Boulejfen, Ali Gharsallah, Fadhel M. Ghannouchi","volume":46,"journal":"International Journal of Electrical and Computer Engineering","pagesStart":1459,"pagesEnd":1464,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/13495","abstract":"In this paper, a system level behavioural model for RF\r\npower amplifier, which exhibits memory effects, and based on multibranch\r\nsystem is proposed. When higher order terms are included,\r\nthe memory polynomial model (MPM) exhibits numerical\r\ninstabilities. A set of memory orthogonal polynomial model\r\n(OMPM) is introduced to alleviate the numerical instability problem\r\nassociated to MPM model. A data scaling and centring algorithm was\r\napplied to improve the power amplifier modeling accuracy.\r\nSimulation results prove that the numerical instability can be greatly\r\nreduced, as well as the model precision improved with nonlinear\r\nmodel.","references":"[1] J. S. Kenney, W. Woo, L. Ding, R. Raich, H. Ku, and G. T. Zhou, \"The\r\nimpact of memory effects on predistortion linearization of RF power\r\namplifiers,\" in Proc. 8th Int. Microwave Opt. Technol. Symp.,\r\nMontreal, QC, Canada, June 19-23, 2001, pp. 189-193.\r\n[2] Kim and K. Konstantinou, \"Digital predistortion of wideband signals\r\nbased on power amplifier model with memory,\" IET Electron.Lett., vol.\r\n37, no. 23, pp. 1417-1418, Nov. 2001.\r\n[3] L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C.\r\nR. Giardina, \"A robust digital baseband predistorter constructed using\r\nmemory polynomials,\" IEEE Trans. Commun., vol. 52, no. 1, pp. 159-\r\n165, Jan. 2004.\r\n[4] D. Morgan, Z. Ma, J. Kim, M. Zierdt, and J. Pastalan, \"A generalized\r\nmemory polynomial model for digital predistortion of RF power\r\namplifiers,\" IEEE Trans. Signal Process., vol. 54, pp. 3852-3860, Oct.\r\n2006.\r\n[5] O. Hammi, F. M. Ghannouchi, and B. Vassilakis, \"A compact envelopememory\r\npolynomial for RF transmitters modeling with application to\r\nbaseband and RF-digital predistortion,\" IEEE Microw. Wireless\r\nCompon. Lett., vol. 18, no. 5, pp. 359-361, May 2008.\r\n[6] R. N. Braithwaite, \"Wide bandwidth adaptive digital predistortion of\r\npower amplifiers using reduced order memory correction,\", in IEEE\r\nMTT-S Int. Microwave Symp. Dig., June 2008, pp. 1517-1520.\r\n[7] A. Zhu, J. C. Pedro, and T. J. Brazil, \"Dynamic deviation reduction\r\nbased behavioral modeling of RF power amplifiers,\" IEEE Trans.\r\nMicrow. Theory Tech., vol. 54, no. 12, pp. 4323-4332, Dec. 2006.\r\n[8] A. Zhu, J. Pedro, and T. Cunha, \"Pruning the Volterra series for\r\nbehavioral modeling of power amplifiers using physical knowledge,\"\r\nIEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 813-821, May\r\n2007\r\n[9] A. Zhu, P. J. Draxler, J. J. Yan, T. J. Brazil, D. F. Kimball, and P. M.\r\nAsbeck, \"Open-loop digital predistorter for RF power amplifiers using\r\ndynamic deviation reduction-based Volterra series,\" IEEE Trans.\r\nMicrow. Theory Tech., vol. 56, no. 7, pp. 1524-1534, July 2008.\r\n[10] Raich, R., Q. Hua, and G.T. Zhou, \"Orthogonal polynomials for power\r\namplifier modeling and predistorter design\", Vehicular Technology,\r\nIEEE Transactions on, 2004, p. 1468-1479.\r\n[11] Chokri, J., Noureddine, B., Ali, G., and Fadhel, G., \"Performance\r\nAssessment of RF Power Amplifier Memory Polynomial Models under\r\nDifferent Signal Statistics\", ICECS 2009, 13-16 Dec. Tunisia.\r\n[12] Hammi, O., S. Boumaiza, and F.M. Ghannouchi, On the Robustness of\r\nDigital Predistortion Function Synthesis and Average Power Tracking\r\nfor Highly Nonlinear Power Amplifiers. IEEE Transactions Microwave\r\nTheory and Techniques, on, 2007, p. 1382-1389.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 46, 2010"}