Search results for: turbine unsteady flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2510

Search results for: turbine unsteady flow

2270 Mathematical Modeling of Gas Turbine Blade Cooling

Authors: А. Pashayev, C. Ardil, D. Askerov, R. Sadiqov, A. Samedov

Abstract:

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasistationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.

Keywords: Mathematical Modeling, Gas Turbine Blade Cooling, Neural Networks, BIEM and FDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
2269 Use of Heliox during Spontaneous Ventilation: Model Study

Authors: Martin Rozanek, Karel Roubik

Abstract:

The study deals with the modelling of the gas flow during heliox therapy. A special model has been developed to study the effect of the helium upon the gas flow in the airways during the spontaneous breathing. Lower density of helium compared with air decreases the Reynolds number and it allows improving the flow during the spontaneous breathing. In the cases, where the flow becomes turbulent while the patient inspires air the flow is still laminar when the patient inspires heliox. The use of heliox decreases the work of breathing and improves ventilation. It allows in some cases to prevent the intubation of the patients.

Keywords: Gas flow, heliox, Reynolds number, turbulent flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
2268 Portable Hands-Free Process Assistant for Gas Turbine Maintenance

Authors: Elisabeth Brandenburg, Robert Woll, Rainer Stark

Abstract:

This paper presents how smart glasses and voice commands can be used for improving the maintenance process of industrial gas turbines. It presents the process of inspecting a gas turbine’s combustion chamber and how it is currently performed using a set of paper-based documents. In order to improve this process, a portable hands-free process assistance system has been conceived. In the following, it will be presented how the approach of user-centered design and the method of paper prototyping have been successfully applied in order to design a user interface and a corresponding workflow model that describes the possible interaction patterns between the user and the interface. The presented evaluation of these results suggests that the assistance system could help the user by rendering multiple manual activities obsolete, thus allowing him to work hands-free and to save time for generating protocols.

Keywords: Paper prototyping, smart glasses, turbine maintenance, user centered design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1330
2267 Modeling and Analysis of DFIG Based Wind Power System Using Instantaneous Power Components

Authors: Jaimala Gambhir, Tilak Thakur, Puneet Chawla

Abstract:

As per the statistical data, the Doubly-fed Induction Generator (DFIG) based wind turbine with variable speed and variable pitch control is the most common wind turbine in the growing wind market. This machine is usually used on the grid connected wind energy conversion system to satisfy grid code requirements such as grid stability, Fault Ride Through (FRT), power quality improvement, grid synchronization and power control etc. Though the requirements are not fulfilled directly by the machine, the control strategy is used in both the stator as well as rotor side along with power electronic converters to fulfil the requirements stated above. To satisfy the grid code requirements of wind turbine, usually grid side converter is playing a major role. So in order to improve the operation capacity of wind turbine under critical situation, the intensive study of both machine side converter control and grid side converter control is necessary In this paper DFIG is modeled using power components as variables and the performance of the DFIG system is analysed under grid voltage fluctuations. The voltage fluctuations are made by lowering and raising the voltage values in the utility grid intentionally for the purpose of simulation keeping in view of different grid disturbances.

Keywords: DFIG, dynamic modeling, DPC, sag, swell, voltage fluctuations, FRT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2612
2266 The Delaying Influence of Degradation on the Divestment of Gas Turbines for Associated Gas Utilisation: Part 1

Authors: Mafel Obhuo, Dodeye I. Igbong, Duabari S. Aziaka, Pericles Pilidis

Abstract:

An important feature of the exploitation of associated gas as fuel for gas turbine engines is a declining supply. So when exploiting this resource, the divestment of prime movers is very important as the fuel supply diminishes with time. This paper explores the influence of engine degradation on the timing of divestments. Hypothetical but realistic gas turbine engines were modelled with Turbomatch, the Cranfield University gas turbine performance simulation tool. The results were deployed in three degradation scenarios within the TERA (Techno-economic and environmental risk analysis) framework to develop economic models. An optimisation with Genetic Algorithms was carried out to maximize the economic benefit. The results show that degradation will have a significant impact. It will delay the divestment of power plants, while they are running less efficiently. Over a 20 year investment, a decrease of $0.11bn, $0.26bn and $0.45bn (billion US dollars) were observed for the three degradation scenarios as against the clean case.

Keywords: Economic return, flared associated gas, net present value, optimisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1044
2265 Modeling Converters during the Warm-up Period for Hydrocarbon Oxidation

Authors: Sanchita Chauhan, V.K. Srivastava

Abstract:

Catalytic converters are used for minimizing the release of pollutants to the atmosphere. It is during the warm-up period that hydrocarbons are seen to be released in appreciable quantities from these converters. In this paper the conversion of a fast oxidizing hydrocarbon propylene is analysed using two numerical methods. The quasi steady state method assumes the accumulation terms to be negligible in the gas phase mass and energy balance equations, however this term is present in the solid phase energy balance. The unsteady state model accounts for the accumulation term to be present in the gas phase mass and energy balance and in the solid phase energy balance. The results derived from the two models for gas concentration, gas temperature and solid temperature are compared.

Keywords: Propylene, catalyst, quasi steady state, unsteady state.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
2264 Heat and Mass Transfer over an Unsteady Stretching Surface Embedded in a Porous Medium in the Presence of Variable Chemical Reaction

Authors: T. G. Emam

Abstract:

The effect of variable chemical reaction on heat and mass transfer characteristics over unsteady stretching surface embedded in a porus medium is studied. The governing time dependent boundary layer equations are transformed into ordinary differential equations containing chemical reaction parameter, unsteadiness parameter, Prandtl number and Schmidt number. These equations have been transformed into a system of first order differential equations. MATHEMATICA has been used to solve this system after obtaining the missed initial conditions. The velocity gradient, temperature, and concentration profiles are computed and discussed in details for various values of the different parameters.

Keywords: Heat and mass transfer, stretching surface, chemical reaction, porus medium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
2263 Fatigue Failure Analysis in AISI 304 Stainless Wind Turbine Shafts

Authors: M. F. V. Montezuma, E. P. Deus, M. C. Carvalho

Abstract:

Wind turbines are equipment of great importance for generating clean energy in countries and regions with abundant winds. However, complex loadings fluctuations to which they are subject can cause premature failure of these equipment due to the material fatigue process. This work evaluates fatigue failures in small AISI 304 stainless steel turbine shafts. Fractographic analysis techniques, chemical analyzes using energy dispersive spectrometry (EDS), and hardness tests were used to verify the origin of the failures, characterize the properties of the components and the material. The nucleation of cracks on the shafts' surface was observed due to a combined effect of variable stresses, geometric stress concentrating details, and surface wear, leading to the crack's propagation until the catastrophic failure. Beach marks were identified in the macrographic examination, characterizing the probable failure due to fatigue. The sensitization phenomenon was also observed.

Keywords: Fatigue, sensitization phenomenon, stainless steel shafts, wind turbine failure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 649
2262 Gas Turbine Optimal PID Tuning by Genetic Algorithm using MSE

Authors: R. Oonsivilai, A. Oonsivilai

Abstract:

Realistic systems generally are systems with various inputs and outputs also known as Multiple Input Multiple Output (MIMO). Such systems usually prove to be complex and difficult to model and control purposes. Therefore, decomposition was used to separate individual inputs and outputs. A PID is assigned to each individual pair to regulate desired settling time. Suitable parameters of PIDs obtained from Genetic Algorithm (GA), using Mean of Squared Error (MSE) objective function.

Keywords: Gas Turbine, PID, Genetic Algorithm, Transfer function.Mean of Squared Error

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
2261 Experimental Study of the Metal Foam Flow Conditioner for Orifice Plate Flowmeters

Authors: B. Manshoor, N. Ihsak, Amir Khalid

Abstract:

The sensitivity of orifice plate metering to disturbed flow (either asymmetric or swirling) is a subject of great concern to flow meter users and manufacturers. The distortions caused by pipe fittings and pipe installations upstream of the orifice plate are major sources of this type of non-standard flows. These distortions can alter the accuracy of metering to an unacceptable degree. In this work, a multi-scale object known as metal foam has been used to generate a predetermined turbulent flow upstream of the orifice plate. The experimental results showed that the combination of an orifice plate and metal foam flow conditioner is broadly insensitive to upstream disturbances. This metal foam demonstrated a good performance in terms of removing swirl and producing a repeatable flow profile within a short distance downstream of the device. The results of using a combination of a metal foam flow conditioner and orifice plate for non-standard flow conditions including swirling flow and asymmetric flow show this package can preserve the accuracy of metering up to the level required in the standards.

Keywords: Metal foam flow conditioner, flow measurement, orifice plate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
2260 Exergy Based Performance Analysis of a Gas Turbine Unit at Various Ambient Conditions

Authors: Idris A. Elfeituri

Abstract:

This paper studies the effect of ambient conditions on the performance of a 285 MW gas turbine unit using the exergy concept. Based on the available exergy balance models developed, a computer program has been constructed to investigate the performance of the power plant under varying ambient temperature and relative humidity conditions. The variations of ambient temperature range from zero to 50 ºC and the relative humidity ranges from zero to 100%, while the unit load kept constant at 100% of the design load. The exergy destruction ratio and exergy efficiency are determined for each component and for the entire plant. The results show a moderate increase in the total exergy destruction ratio of the plant from 62.05% to 65.20%, while the overall exergy efficiency decrease from 38.2% to 34.8% as the ambient temperature increases from zero to 50 ºC at all relative humidity values. Furthermore, an increase of 1 ºC in ambient temperature leads to 0.063% increase in the total exergy destruction ratio and 0.07% decrease in the overall exergy efficiency. The relative humidity has a remarkable influence at higher ambient temperature values on the exergy destruction ratio of combustion chamber and on exergy loss ratio of the exhaust gas but almost no effect on the total exergy destruction ratio and overall exergy efficiency. At 50 ºC ambient temperature, the exergy destruction ratio of the combustion chamber increases from 30% to 52% while the exergy loss ratio of the exhaust gas decreases from 28% to 8% as the relative humidity increases from zero to 100%. In addition, exergy analysis reveals that the combustion chamber and exhaust gas are the main source of irreversibility in the gas turbine unit. It is also identified that the exergy efficiency and exergy destruction ratio are considerably dependent on the variations in the ambient air temperature and relative humidity. Therefore, the incorporation of the existing gas turbine plant with inlet air cooling and humidifier technologies should be considered seriously.

Keywords: Destruction, exergy, gas turbine, irreversibility, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 866
2259 Examining the Effects of Production Method on Aluminium A356 Alloy and A356-10%SiCp Composite for Hydro Turbine Bucket Application

Authors: Williams S. Ebhota, Freddie L. Inambao

Abstract:

This study investigates the use of centrifugal casting method to fabricate functionally graded aluminium A356 Alloy and A356-10%SiCp composite for hydro turbine bucket application. The study includes the design and fabrication of a permanent mould. The mould was put into use and the buckets of A356 Alloy and A356-10%SiCp composite were cast, cut and machined into specimens. Some specimens were given T6 heat treatment and the specimens were prepared for different examinations accordingly. The SiCp particles were found to be more at inner periphery of the bucket. The maximum hardness of As-Cast A356 and A356-10%SiCp composite was recorded at the inner periphery to be 60 BRN and 95BRN, respectively. And these values were appreciated to 98BRN and 122BRN for A356 alloy and A356-10%SiCp composite, respectively. It was observed that the ultimate tensile stress and yield tensile stress prediction curves show the same trend.

Keywords: A356 alloy, A356-10%SiCp composite, centrifugal casting, pelton bucket, turbine blade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1230
2258 Gas-Liquid Two Phase Flow Phenomenon in Near Horizontal Upward and Downward Inclined Pipe Orientations

Authors: Afshin J. Ghajar, Swanand M. Bhagwat

Abstract:

The main purpose of this work is to experimentally investigate the effect of pipe orientation on two phase flow phenomenon. Flow pattern, void fraction and two phase pressure drop is measured in a polycarbonate pipe with an inside diameter of 12.7mm for inclination angles ranging from -20o to +20o using air-water fluid combination. The experimental data covers all flow patterns and the entire range of void fraction typically observed in two phase flow. The effect of pipe orientation on void fraction and two phase pressure drop is justified with reference to the change in flow structure and two phase flow behavior. In addition to this, the top performing void fraction and two phase pressure drop correlations available in the literature are presented and their performance is assessed against the experimental data in the present study and that available in the literature.

Keywords: Flow patterns, inclined two phase flow, pressure drop, void fraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4509
2257 Comparison of Detached Eddy Simulations with Turbulence Modeling

Authors: Muhammad Amjad Sohail, Prof. Yan Chao, Mukkarum Husain

Abstract:

Flow field around hypersonic vehicles is very complex and difficult to simulate. The boundary layers are squeezed between shock layer and body surface. Resolution of boundary layer, shock wave and turbulent regions where the flow field has high values is difficult of capture. Detached eddy simulation (DES) is a modification of a RANS model in which the model switches to a subgrid scale formulation in regions fine enough for LES calculations. Regions near solid body boundaries and where the turbulent length scale is less than the maximum grid dimension are assigned the RANS mode of solution. As the turbulent length scale exceeds the grid dimension, the regions are solved using the LES mode. Therefore the grid resolution is not as demanding as pure LES, thereby considerably cutting down the cost of the computation. In this research study hypersonic flow is simulated at Mach 8 and different angle of attacks to resolve the proper boundary layers and discontinuities. The flow is also simulated in the long wake regions. Mesh is little different than RANS simulations and it is made dense near the boundary layers and in the wake regions to resolve it properly. Hypersonic blunt cone cylinder body with frustrum at angle 5o and 10 o are simulated and there aerodynamics study is performed to calculate aerodynamics characteristics of different geometries. The results and then compared with experimental as well as with some turbulence model (SA Model). The results achieved with DES simulation have very good resolution as well as have excellent agreement with experimental and available data. Unsteady simulations are performed for DES calculations by using duel time stepping method or implicit time stepping. The simulations are performed at Mach number 8 and angle of attack from 0o to 10o for all these cases. The results and resolutions for DES model found much better than SA turbulence model.

Keywords: Detached eddy simulation, dual time stepping, hypersonic flow, turbulence modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2315
2256 A Parametric Study on Deoiling Hydrocyclones Flow Field

Authors: Maysam Saidi, Reza Maddahian, Bijan Farhanieh

Abstract:

Hydrocyclones flow field study is conducted by performing a parametric study. Effect of cone angle on deoiling hydrocyclones flow behaviour is studied in this research. Flow field of hydrocyclone is obtained by three-dimensional simulations with OpenFOAM code. Because of anisotropic behaviour of flow inside hydrocyclones LES is a suitable method to predict the flow field since it resolves large scales and model isotropic small scales. Large eddy simulation is used to predict the flow behavior of three different cone angles. Differences in tangential velocity and pressure distribution are reported in some figures.

Keywords: Deoiling hydrocyclones, Flow field, Hydrocyclone cone angle, Large Eddy Simulation, Pressure distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2366
2255 Design and Development of Pico-hydro Generation System for Energy Storage Using Consuming Water Distributed to Houses

Authors: H. Zainuddin, M. S. Yahaya, J. M. Lazi, M. F. M. Basar, Z. Ibrahim

Abstract:

This paper describes the design and development of pico-hydro generation system using consuming water distributed to houses. Water flow in the domestic pipes has kinetic energy that potential to generate electricity for energy storage purposes in addition to the routine activities such as laundry, cook and bathe. The inherent water pressure and flow inside the pipe from utility-s main tank that used for those usual activities is also used to rotate small scale hydro turbine to drive a generator for electrical power generation. Hence, this project is conducted to develop a small scale hydro generation system using consuming water distributed to houses as an alternative electrical energy source for residential use.

Keywords: Alternative Energy, Energy storage, Permanent Magnet DC Generator, Pico-Hydro Generation System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8298
2254 Determination of Safety Distance Around Gas Pipelines Using Numerical Methods

Authors: Omid Adibi, Nategheh Najafpour, Bijan Farhanieh, Hossein Afshin

Abstract:

Energy transmission pipelines are one of the most vital parts of each country which several strict laws have been conducted to enhance the safety of these lines and their vicinity. One of these laws is the safety distance around high pressure gas pipelines. Safety distance refers to the minimum distance from the pipeline where people and equipment do not confront with serious damages. In the present study, safety distance around high pressure gas transmission pipelines were determined by using numerical methods. For this purpose, gas leakages from cracked pipeline and created jet fires were simulated as continuous ignition, three dimensional, unsteady and turbulent cases. Numerical simulations were based on finite volume method and turbulence of flow was considered using k-ω SST model. Also, the combustion of natural gas and air mixture was applied using the eddy dissipation method. The results show that, due to the high pressure difference between pipeline and environment, flow chocks in the cracked area and velocity of the exhausted gas reaches to sound speed. Also, analysis of the incident radiation results shows that safety distances around 42 inches high pressure natural gas pipeline based on 5 and 15 kW/m2 criteria are 205 and 272 meters, respectively.

Keywords: Gas pipelines, incident radiation, numerical simulation, safety distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1064
2253 Motion Detection Techniques Using Optical Flow

Authors: A. A. Shafie, Fadhlan Hafiz, M. H. Ali

Abstract:

Motion detection is very important in image processing. One way of detecting motion is using optical flow. Optical flow cannot be computed locally, since only one independent measurement is available from the image sequence at a point, while the flow velocity has two components. A second constraint is needed. The method used for finding the optical flow in this project is assuming that the apparent velocity of the brightness pattern varies smoothly almost everywhere in the image. This technique is later used in developing software for motion detection which has the capability to carry out four types of motion detection. The motion detection software presented in this project also can highlight motion region, count motion level as well as counting object numbers. Many objects such as vehicles and human from video streams can be recognized by applying optical flow technique.

Keywords: Background modeling, Motion detection, Optical flow, Velocity smoothness constant, motion trajectories.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5351
2252 Effect of Adverse Pressure Gradient on a Fluctuating Velocity over the Co-Flow Jet Airfoil

Authors: Morteza Mirhosseini, Amir B. Khoshnevis

Abstract:

The boundary layer separation and new active flow control of a NACA 0025 airfoil were studied experimentally. This new flow control is sometimes known as a co-flow jet (cfj) airfoil. This paper presents the fluctuating velocity in a wall jet over the co-flow jet airfoil subjected to an adverse pressure gradient and a curved surface. In these results, the fluctuating velocity at the inner part increasing by increased the angle of attack up to 12o and this has due to the jet energized, while the angle of attack 20o has different. The airfoil cord based Reynolds number has 105.

Keywords: Adverse pressure gradient, fluctuating velocity, wall jet, co-flow jet airfoil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
2251 An Improvement of Flow Forming Process for Pressure Vessels by Four Rollers Machine

Authors: P. Sawitri, S. Cdr. Sittha, T. Kritsana

Abstract:

Flow forming is widely used in many industries, especially in defence technology industries. Pressure vessels requirements are high precision, light weight, seamless and optimum strength. For large pressure vessels, flow forming by 3 rollers machine were used. In case of long range rocket motor case flow forming and welding of pressure vessels have been used for manufacturing. Due to complication of welding process, researchers had developed 4 meters length pressure vessels without weldment by 4 rollers flow forming machine. Design and preparation of preform work pieces are performed. The optimization of flow forming parameter such as feed rate, spindle speed and depth of cut will be discussed. The experimental result shown relation of flow forming parameters to quality of flow formed tube and prototype pressure vessels have been made.

Keywords: Flow forming, Pressure vessel, four rollers, feed rate, spindle speed, cold work.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2744
2250 Flow Properties of Wood Pulp Suspensions in Pipes

Authors: M. Sumida

Abstract:

The flow of suspensions of wood pulp fibers in circular pipes has been investigated experimentally. The flow characteristics of pulp suspensions are discussed with regard to five flow regimes designated by the author. In particular, the effects of the shear stress at the pipe wall on the disruption and dispersion of networks of pulp fibers are examined. The values of the disruptive and dispersive shear stresses are formulated as simple expressions depending on only the fiber concentration. Furthermore, the flow properties of the suspensions are described using the yield shear stress.

Keywords: Fiber Concentration, Flow Properties, Pulp Suspension, Yield Shear Stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3251
2249 Structural Performance Evaluation of Segmented Wind Turbine Blade through Finite Element Simulation

Authors: Chandrashekhar Bhat, Dilifa J. Noronha, Faber A. Saldanha

Abstract:

Transportation of long turbine blades from one place to another is a difficult process. Hence a feasibility study of modularization of wind turbine blade was taken from structural standpoint through finite element analysis. Initially, a non-segmented blade is modeled and its structural behavior is evaluated to serve as reference. The resonant, static bending and fatigue tests are simulated in accordance with IEC61400-23 standard for comparison purpose. The non-segmented test blade is separated at suitable location based on trade off studies and the segments are joined with an innovative double strap bonded joint configuration. The adhesive joint is modeled by adopting cohesive zone modeling approach in ANSYS. The developed blade model is analyzed for its structural response through simulation. Performances of both the blades are found to be similar, which indicates that, efficient segmentation of the long blade is possible which facilitates easy transportation of the blades and on site reassembling. The location selected for segmentation and adopted joint configuration has resulted in an efficient segmented blade model which proves the methodology adopted for segmentation was quite effective. The developed segmented blade appears to be the viable alternative considering its structural response specifically in fatigue within considered assumptions.

Keywords: Cohesive zone modeling, fatigue, segmentation, wind turbine blade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3257
2248 Study on a Nested Cartesian Grid Method

Authors: Yih-Ferng Peng

Abstract:

In this paper, the local grid refinement is focused by using a nested grid technique. The Cartesian grid numerical method is developed for simulating unsteady, viscous, incompressible flows with complex immersed boundaries. A finite volume method is used in conjunction with a two-step fractional-step procedure. The key aspects that need to be considered in developing such a nested grid solver are imposition of interface conditions on the inter-block and accurate discretization of the governing equation in cells that are with the inter-block as a control surface. A new interpolation procedure is presented which allows systematic development of a spatial discretization scheme that preserves the spatial accuracy of the underlying solver. The present nested grid method has been tested by two numerical examples to examine its performance in the two dimensional problems. The numerical examples include flow past a circular cylinder symmetrically installed in a Channel and flow past two circular cylinders with different diameters. From the numerical experiments, the ability of the solver to simulate flows with complicated immersed boundaries is demonstrated and the nested grid approach can efficiently speed up the numerical solutions.

Keywords: local grid refinement, Cartesian grid, nested grid, fractional-step method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
2247 Investigation of Different Control Stratgies for UPFC Decoupled Model and the Impact of Location on Control Parameters

Authors: S.A. Alqallaf, S.A. Al-Mawsawi, A. Haider

Abstract:

In order to evaluate the performance of a unified power flow controller (UPFC), mathematical models for steady state and dynamic analysis are to be developed. The steady state model is mainly concerned with the incorporation of the UPFC in load flow studies. Several load flow models for UPFC have been introduced in literature, and one of the most reliable models is the decoupled UPFC model. In spite of UPFC decoupled load flow model simplicity, it is more robust compared to other UPFC load flow models and it contains unique capabilities. Some shortcoming such as additional set of nonlinear equations are to be solved separately after the load flow solution is obtained. The aim of this study is to investigate the different control strategies that can be realized in the decoupled load flow model (individual control and combined control), and the impact of the location of the UPFC in the network on its control parameters.

Keywords: UPFC, Decoupled model, Load flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
2246 Residual Stresses in Thermally Sprayed Gas Turbine Components

Authors: M.Jalali Azizpour, S.Norouzi, D.Sajedipour, H.Mohammadi Majd

Abstract:

In this paper, the residual stress of thermal spray coatings in gas turbine component by curvature method has been studied. The samples and shaft were coated by hard WC-12Co cermets using high velocity oxy fuel (HVOF) after preparation in same conditions. The curvature of coated samples was measured by using of coordinate measurement machine (CMM). The metallurgical and Tribological studies has been made on the coated shaft using optical microscopy and scanning electron microscopy (SEM)

Keywords: Thermal spray, Residual stress, Wear mechanism, HVOF, Gas compressor shafts

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
2245 An Experimental Study of Tip Vortex Cavitation Inception in an Axial Flow Pump

Authors: Mohammad Taghi Shervani Tabar, Zahra Poursharifi

Abstract:

The interaction of the blade tip with the casing boundary layer and the leakage flow may lead to a kind of cavitation namely tip vortex cavitation. In this study, the onset of tip vortex cavitation was experimentally investigated in an axial flow pump. For a constant speed and a fixed angle of attack and by changing the flow rate, the pump head, input power, output power and efficiency were calculated and the pump characteristic curves were obtained. The cavitation phenomenon was observed with a camera and a stroboscope. Finally, the critical flow region, which tip vortex cavitation might have occurred, was identified. The results show that just by adjusting the flow rate, out of the specified region, the possibility of occurring tip vortex cavitation, decreases to a great extent.

Keywords: Axial flow pump, Gap cavitation, Leakage vortex, Tip vortex cavitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2652
2244 Power Flow and Modal Analysis of a Power System Including Unified Power Flow Controller

Authors: Djilani Kobibi Youcef Islam, Hadjeri Samir, Djehaf Mohamed Abdeldjalil

Abstract:

The Flexible AC Transmission System (FACTS) technology is a new advanced solution that increases the reliability and provides more flexibility, controllability, and stability of a power system. The Unified Power Flow Controller (UPFC), as the most versatile FACTS device for regulating power flow, is able to control respectively transmission line real power, reactive power, and node voltage. The main purpose of this paper is to analyze the effect of the UPFC on the load flow, the power losses, and the voltage stability using NEPLAN software modules, Newton-Raphson load flow is used for the power flow analysis and the modal analysis is used for the study of the voltage stability. The simulation was carried out on the IEEE 14-bus test system.

Keywords: FACTS, load flow, modal analysis, UPFC, voltage stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2328
2243 CACSC tool for Automatic Design of Robust Controllers for Hydropower Plants

Authors: Jose J.CarreñoZagarra, Rodolfo Villamizar Mejía

Abstract:

This work describes a CACSD tool for automatic design of robust controllers for hydraulic turbines. The tool calculates the optimal  controller using the MATLAB hinfopt function and it serves as a practical and effective solution for the laborious task of designing a different controller for each type of turbine and generator, and different parameters and conditions of the plant. Results of the simulation of a generating unit subject to parameters variation show the accuracy and efficiency of the obtained robust controllers.

Keywords: Robust Control, Hydroelectric System Turbine, Control H∞, CACSD

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
2242 Type–2 Fuzzy Programming for Optimizing the Heat Rate of an Industrial Gas Turbine via Absorption Chiller Technology

Authors: T. Ganesan, M. S. Aris, I. Elamvazuthi, Momen Kamal Tageldeen

Abstract:

Terms set in power purchase agreements (PPA) challenge power utility companies in balancing between the returns (from maximizing power production) and securing long term supply contracts at capped production. The production limitation set in the PPA has driven efforts to maximize profits through efficient and economic power production. In this paper, a combined industrial-scale gas turbine (GT) - absorption chiller (AC) system is considered to cool the GT air intake for reducing the plant’s heat rate (HR). This GT-AC system is optimized while considering power output limitations imposed by the PPA. In addition, the proposed formulation accounts for uncertainties in the ambient temperature using Type-2 fuzzy programming. Using the enhanced chaotic differential evolution (CEDE), the Pareto frontier was constructed and the optimization results are analyzed in detail.

Keywords: Absorption chillers, turbine inlet air cooling, power purchase agreement, multiobjective optimization, type-2 fuzzy programming, chaotic differential evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 889
2241 Optimization Approach on Flapping Aerodynamic Characteristics of Corrugated Airfoil

Authors: Wei-Hsin Sun, Jr-Ming Miao, Chang-Hsien Tai, Chien-Chun Hung

Abstract:

The development of biomimetic micro-aerial-vehicles (MAVs) with flapping wings is the future trend in military/domestic field. The successful flight of MAVs is strongly related to the understanding of unsteady aerodynamic performance of low Reynolds number airfoils under dynamic flapping motion. This study explored the effects of flapping frequency, stroke amplitude, and the inclined angle of stroke plane on lift force and thrust force of a bio-inspiration corrugated airfoil with 33 full factorial design of experiment and ANOVA analysis. Unsteady vorticity flows over a corrugated thin airfoil executing flapping motion are computed with time-dependent two-dimensional laminar incompressible Reynolds-averaged Navier-Stokes equations with the conformal hybrid mesh. The tested freestream Reynolds number based on the chord length of airfoil as characteristic length is fixed of 103. The dynamic mesh technique is applied to model the flapping motion of a corrugated airfoil. Instant vorticity contours over a complete flapping cycle clearly reveals the flow mechanisms for lift force generation are dynamic stall, rotational circulation, and wake capture. The thrust force is produced as the leading edge vortex shedding from the trailing edge of airfoil to form a reverse von Karman vortex. Results also indicated that the inclined angle is the most significant factor on both the lift force and thrust force. There are strong interactions between tested factors which mean an optimization study on parameters should be conducted in further runs.

Keywords: biomimetic, MAVs, aerodynamic, ANOVA analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091