WASET
	%0 Journal Article
	%A Evgeniy Burlutskiy
	%D 2012
	%J International Journal of Physical and Mathematical Sciences
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 61, 2012
	%T Numerical Analysis of Rapid Gas Decompression in Pure Nitrogen using 1D and 3D Transient Mathematical Models of Gas Flow in Pipes
	%U https://publications.waset.org/pdf/14614
	%V 61
	%X The paper presents a numerical investigation on the
rapid gas decompression in pure nitrogen which is made by using the
one-dimensional (1D) and three-dimensional (3D) mathematical
models of transient compressible non-isothermal fluid flow in pipes.
A 1D transient mathematical model of compressible thermal multicomponent
fluid mixture flow in pipes is presented. The set of the
mass, momentum and enthalpy conservation equations for gas phase
is solved in the model. Thermo-physical properties of multicomponent
gas mixture are calculated by solving the Equation of
State (EOS) model. The Soave-Redlich-Kwong (SRK-EOS) model is
chosen. This model is successfully validated on the experimental data
[1] and shows a good agreement with measurements. A 3D transient
mathematical model of compressible thermal single-component gas
flow in pipes, which is built by using the CFD Fluent code (ANSYS),
is presented in the paper. The set of unsteady Reynolds-averaged
conservation equations for gas phase is solved. Thermo-physical
properties of single-component gas are calculated by solving the Real
Gas Equation of State (EOS) model. The simplest case of gas
decompression in pure nitrogen is simulated using both 1D and 3D
models. The ability of both models to simulate the process of rapid
decompression with a high order of agreement with each other is
tested. Both, 1D and 3D numerical results show a good agreement
between each other. The numerical investigation shows that 3D CFD
model is very helpful in order to validate 1D simulation results if the
experimental data is absent or limited.
	%P 27 - 32