@article{(Open Science Index):https://publications.waset.org/pdf/15329,
	  title     = {Comparison of Detached Eddy Simulations with Turbulence Modeling},
	  author    = {Muhammad Amjad Sohail and  Prof. Yan Chao and  Mukkarum Husain},
	  country	= {},
	  institution	= {},
	  abstract     = {Flow field around hypersonic vehicles is very
complex and difficult to simulate. The boundary layers are squeezed
between shock layer and body surface. Resolution of boundary layer,
shock wave and turbulent regions where the flow field has high
values is difficult of capture. Detached eddy simulation (DES) is a
modification of a RANS model in which the model switches to a
subgrid scale formulation in regions fine enough for LES
calculations. Regions near solid body boundaries and where the
turbulent length scale is less than the maximum grid dimension are
assigned the RANS mode of solution. As the turbulent length scale
exceeds the grid dimension, the regions are solved using the LES
mode. Therefore the grid resolution is not as demanding as pure LES,
thereby considerably cutting down the cost of the computation. In
this research study hypersonic flow is simulated at Mach 8 and
different angle of attacks to resolve the proper boundary layers and
discontinuities. The flow is also simulated in the long wake regions.
Mesh is little different than RANS simulations and it is made dense
near the boundary layers and in the wake regions to resolve it
properly. Hypersonic blunt cone cylinder body with frustrum at angle
5o and 10 o are simulated and there aerodynamics study is performed
to calculate aerodynamics characteristics of different geometries. The
results and then compared with experimental as well as with some
turbulence model (SA Model). The results achieved with DES
simulation have very good resolution as well as have excellent
agreement with experimental and available data. Unsteady
simulations are performed for DES calculations by using duel time
stepping method or implicit time stepping. The simulations are
performed at Mach number 8 and angle of attack from 0o to 10o for
all these cases. The results and resolutions for DES model found
much better than SA turbulence model.},
	    journal   = {International Journal of Aerospace and Mechanical Engineering},
	  volume    = {5},
	  number    = {2},
	  year      = {2011},
	  pages     = {496 - 502},
	  ee        = {https://publications.waset.org/pdf/15329},
	  url   	= {https://publications.waset.org/vol/50},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 50, 2011},