Search results for: self-tuning control.
3489 Clustering based Voltage Control Areas for Localized Reactive Power Management in Deregulated Power System
Authors: Saran Satsangi, Ashish Saini, Amit Saraswat
Abstract:
In this paper, a new K-means clustering based approach for identification of voltage control areas is developed. Voltage control areas are important for efficient reactive power management in power systems operating under deregulated environment. Although, voltage control areas are formed using conventional hierarchical clustering based method, but the present paper investigate the capability of K-means clustering for the purpose of forming voltage control areas. The proposed method is tested and compared for IEEE 14 bus and IEEE 30 bus systems. The results show that this K-means based method is competing with conventional hierarchical approachKeywords: Voltage control areas, reactive power management, K-means clustering algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24103488 Emulation of a Wind Turbine Using Induction Motor Driven by Field Oriented Control
Authors: L. Benaaouinate, M. Khafallah, A. Martinez, A. Mesbahi, T. Bouragba
Abstract:
This paper concerns with the modeling, simulation, and emulation of a wind turbine emulator for standalone wind energy conversion systems. By using emulation system, we aim to reproduce the dynamic behavior of the wind turbine torque on the generator shaft: it provides the testing facilities to optimize generator control strategies in a controlled environment, without reliance on natural resources. The aerodynamic, mechanical, electrical models have been detailed as well as the control of pitch angle using Fuzzy Logic for horizontal axis wind turbines. The wind turbine emulator consists mainly of an induction motor with AC power drive with torque control. The control of the induction motor and the mathematical models of the wind turbine are designed with MATLAB/Simulink environment. The simulation results confirm the effectiveness of the induction motor control system and the functionality of the wind turbine emulator for providing all necessary parameters of the wind turbine system such as wind speed, output torque, power coefficient and tip speed ratio. The findings are of direct practical relevance.
Keywords: Wind turbine, modeling, emulator, electrical generator, renewable energy, induction motor drive, field oriented control, real time control, wind turbine emulator, pitch angle control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13933487 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.Keywords: Model predictive control, unscented Kalman filter, nonlinear systems, implicit systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9573486 Control of Underactuated Biped Robots Using Event Based Fuzzy Partial Feedback Linearization
Authors: Omid Heydarnia, Akbar Allahverdizadeh, Behnam Dadashzadeh, M. R. Sayyed Noorani
Abstract:
Underactuated biped robots control is one of the interesting topics in robotics. The main difficulties are its highly nonlinear dynamics, open-loop instability, and discrete event at the end of the gait. One of the methods to control underactuated systems is the partial feedback linearization, but it is not robust against uncertainties and disturbances that restrict its performance to control biped walking and running. In this paper, fuzzy partial feedback linearization is presented to overcome its drawback. Numerical simulations verify the effectiveness of the proposed method to generate stable and robust biped walking and running gaits.Keywords: Underactuated system, biped robot, fuzzy control, partial feedback linearization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17783485 Design of DC Voltage Control for D-STATCOM
Authors: Kittaya Somsai, Thanatchai Kulworawanichpong, Nitus Voraphonpiput
Abstract:
This paper presents the DC voltage control design of D-STATCOM when the D-STATCOM is used for load voltage regulation. Although, the DC voltage can be controlled by active current of the D-STATCOM, reactive current still affects the DC voltage. To eliminate this effect, the control strategy with elimination effect of the reactive current is proposed and the results of the control with and without the elimination the effect of the reactive current are compared. For obtaining the proportional and integral gains of the PI controllers, the symmetrical optimum and genetic algorithms methods are applied. The stability margin of these methods are obtained and discussed in detail. In addition, the performance of the DC voltage control based on symmetrical optimum and genetic algorithms methods are compared. Effectiveness of the controllers designed was verified through computer simulation performed by using Power System Tool Block (PSB) in SIMULINK/MATLAB. The simulation results demonstrated that the DC voltage control proposed is effective in regulating DC voltage when the DSTATCOM is used for load voltage regulation.
Keywords: D-STATCOM, DC voltage control, Symmetrical optimum, Genetic algorithms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50483484 Surface Defects Detection for Ceramic Tiles UsingImage Processing and Morphological Techniques
Authors: H. Elbehiery, A. Hefnawy, M. Elewa
Abstract:
Quality control in ceramic tile manufacturing is hard, labor intensive and it is performed in a harsh industrial environment with noise, extreme temperature and humidity. It can be divided into color analysis, dimension verification, and surface defect detection, which is the main purpose of our work. Defects detection is still based on the judgment of human operators while most of the other manufacturing activities are automated so, our work is a quality control enhancement by integrating a visual control stage using image processing and morphological operation techniques before the packing operation to improve the homogeneity of batches received by final users.
Keywords: Quality control, Defects detection, Visual control, Image processing, Morphological operation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66523483 Sliding Mode Control with Fuzzy Boundary Layer to Air-Air Interception Problem
Authors: Mustafa Resa Becan
Abstract:
The performance of a type of fuzzy sliding mode control is researched by considering the nonlinear characteristic of a missile-target interception problem to obtain a robust interception process. The variable boundary layer by using fuzzy logic is proposed to reduce the chattering around the switching surface then is applied to the interception model which was derived. The performances of the sliding mode control with constant and fuzzy boundary layer are compared at the end of the study and the results are evaluated.
Keywords: Sliding mode control, fuzzy, boundary layer, interception problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20193482 Enhancement in a Mechatronic Aluminum Beverage Cans Recycling Machine
Authors: H. M. El-Zomor, M. Hany
Abstract:
Recycling of aluminum beverage cans is an important issue due to its economic and environmental effect. One of the significant factors in aluminum cans recycling process is the transportation cost from the landfill space. An automatic compression baler (ACB) machine has been designed and built to densify the aluminum beverage cans. It has been constructed using numerous fabricated components. Two types of control methodology have been introduced in this ACB machine to achieve its goal. The first is a semi-automatic system, and the second is a mechatronic system by using a Programmable Logic Control (PLC). The effect of single and double pre-compression for the beverage cans have been evaluated by using the PLC control. Comparisons have been performed between the two types of control methodologies by operating this ACB machine in different working conditions. The double pre-compression in PLC control proves that there is an enhancement in the ACB performance by 133% greater than the direct compression in the semi-automatic control. In addition, the percentage of the reduction ratio in volume reaches 77%, and the compaction ratio reaches about four times of the initial volume.
Keywords: Aluminum can recycling, Fully automatic machine, Hydraulic system control, Multi-compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25913481 Fuzzy Logic Control for a Speed Control of Induction Motor using Space Vector Pulse Width Modulation
Authors: Satean Tunyasrirut, Tianchai Suksri, Sompong Srilad
Abstract:
This paper presents design and implements a voltage source inverter type space vector pulse width modulation (SVPWM) for control a speed of induction motor. This scheme leads to be able to adjust the speed of the motor by control the frequency and amplitude of the stator voltage, the ratio of stator voltage to frequency should be kept constant. The fuzzy logic controller is also introduced to the system for keeping the motor speed to be constant when the load varies. The experimental results in testing the 0.22 kW induction motor from no-load condition to rated condition show the effectiveness of the proposed control scheme.Keywords: Fuzzy logic control, space vector pulse width modulation, induction motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30213480 Proposition for a New Approach of Version Control System Based On ECA Active Rules
Authors: S. Benhamed, S. Hocine, D. Benhamamouch
Abstract:
We try to give a solution of version control for documents in web service, that-s why we propose a new approach used specially for the XML documents. The new approach is applied in a centralized repository, this repository coexist with other repositories in a decentralized system. To achieve the activities of this approach in a standard model we use the ECA active rules. We also show how the Event-Condition-Action rules (ECA rules) have been incorporated as a mechanism for the version control of documents. The need to integrate ECA rules is that it provides a clear declarative semantics and induces an immediate operational realization in the system without the need for human intervention.Keywords: ECA Rule, Web service, version control system, propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13813479 Advantages of Fuzzy Control Application in Fast and Sensitive Technological Processes
Authors: Radim Farana, Bogdan Walek, Michal Janosek, Jaroslav Zacek
Abstract:
This paper presents the advantages of fuzzy control use in technological processes control. The paper presents a real application of the Linguistic Fuzzy-Logic Control, developed at the University of Ostrava for the control of physical models in the Intelligent Systems Laboratory. The paper presents an example of a sensitive non-linear model, such as a magnetic levitation model and obtained results which show how modern information technologies can help to solve actual technical problems. A special method based on the LFLC controller with partial components is presented in this paper followed by the method of automatic context change, which is very helpful to achieve more accurate control results. The main advantage of the used system is its robustness in changing conditions demonstrated by comparing with conventional PID controller. This technology and real models are also used as a background for problem-oriented teaching, realized at the department for master students and their collaborative as well as individual final projects.Keywords: Control, fuzzy logic, sensitive system, technological proves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18053478 Design of Power System Stabilizer Based on Sliding Mode Control Theory for Multi- Machine Power System
Authors: Hossein Shahinzadeh, Ladan Darougaran, Ebrahim Jalili Sani, Hamed Yavari, Mahdi Mozaffari Legha
Abstract:
This paper present a new method for design of power system stabilizer (PSS) based on sliding mode control (SMC) technique. The control objective is to enhance stability and improve the dynamic response of the multi-machine power system. In order to test effectiveness of the proposed scheme, simulation will be carried out to analyze the small signal stability characteristics of the system about the steady state operating condition following the change in reference mechanical torque and also parameters uncertainties. For comparison, simulation of a conventional control PSS (lead-lag compensation type) will be carried out. The main approach is focusing on the control performance which later proven to have the degree of shorter reaching time and lower spike.Keywords: Power system stabilizer (PSS), multi-machine power system, sliding mode control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23823477 Lyapunov-Based Tracking Control for Nonholonomic Wheeled Mobile Robot
Authors: Raouf Fareh, Maarouf Saad, Sofiane Khadraoui, Tamer Rabie
Abstract:
This paper presents a tracking control strategy based on Lyapunov approach for nonholonomic wheeled mobile robot. This control strategy consists of two levels. First, a kinematic controller is developed to adjust the right and left wheel velocities. Using this velocity control law, the stability of the tracking error is guaranteed using Lyapunov approach. This kinematic controller cannot be generated directly by the motors. To overcome this problem, the second level of the controllers, dynamic control, is designed. This dynamic control law is developed based on Lyapunov theory in order to track the desired trajectories of the mobile robot. The stability of the tracking error is proved using Lupunov and Barbalat approaches. Simulation results on a nonholonomic wheeled mobile robot are given to demonstrate the feasibility and effectiveness of the presented approach.Keywords: Mobile robot, trajectory tracking, Lyapunov, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24023476 Tracking Performance Evaluation of Robust Back-Stepping Control Design for a Nonlinear Electrohydraulic Servo System
Authors: M. Ahmadnezhad, M. Soltanpour
Abstract:
Electrohydraulic servo system have been used in industry in a wide number of applications. Its dynamics are highly nonlinear and also have large extent of model uncertainties and external disturbances. In this paper, a robust back-stepping control (RBSC) scheme is proposed to overcome the problem of disturbances and system uncertainties effectively and to improve the tracking performance of EHS systems. In order to implement the proposed control scheme, the system uncertainties in EHS systems are considered as total leakage coefficient and effective oil volume. In addition, in order to obtain the virtual controls for stabilizing system, the update rule for the system uncertainty term is induced by the Lyapunov control function (LCF). To verify the performance and robustness of the proposed control system, computer simulation of the proposed control system using Matlab/Simulink Software is executed. From the computer simulation, it was found that the RBSC system produces the desired tracking performance and has robustness to the disturbances and system uncertainties of EHS systems.
Keywords: Electro hydraulic servo system, back-stepping control, robust back-stepping control, Lyapunov redesign
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20323475 Tracking Performance Evaluation of Robust Back-Stepping Control Design for a Nonlinear Electrohydraulic Servo System
Authors: M. Ahmadnezhad, M. Soltanpour
Abstract:
Electrohydraulic servo system have been used in industry in a wide number of applications. Its dynamics are highly nonlinear and also have large extent of model uncertainties and external disturbances. In this paper, a robust back-stepping control (RBSC) scheme is proposed to overcome the problem of disturbances and system uncertainties effectively and to improve the tracking performance of EHS systems. In order to implement the proposed control scheme, the system uncertainties in EHS systems are considered as total leakage coefficient and effective oil volume. In addition, in order to obtain the virtual controls for stabilizing system, the update rule for the system uncertainty term is induced by the Lyapunov control function (LCF). To verify the performance and robustness of the proposed control system, computer simulation of the proposed control system using Matlab/Simulink Software is executed. From the computer simulation, it was found that the RBSC system produces the desired tracking performance and has robustness to the disturbances and system uncertainties of EHS systems.Keywords: Electro hydraulic servo system, back-stepping control, robust back-stepping control, Lyapunov redesign.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14943474 Optimal Bayesian Control of the Proportion of Defectives in a Manufacturing Process
Authors: Viliam Makis, Farnoosh Naderkhani, Leila Jafari
Abstract:
In this paper, we present a model and an algorithm for the calculation of the optimal control limit, average cost, sample size, and the sampling interval for an optimal Bayesian chart to control the proportion of defective items produced using a semi-Markov decision process approach. Traditional p-chart has been widely used for controlling the proportion of defectives in various kinds of production processes for many years. It is well known that traditional non-Bayesian charts are not optimal, but very few optimal Bayesian control charts have been developed in the literature, mostly considering finite horizon. The objective of this paper is to develop a fast computational algorithm to obtain the optimal parameters of a Bayesian p-chart. The decision problem is formulated in the partially observable framework and the developed algorithm is illustrated by a numerical example.Keywords: Bayesian control chart, semi-Markov decision process, quality control, partially observable process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11813473 A Direct Probabilistic Optimization Method for Constrained Optimal Control Problem
Authors: Akbar Banitalebi, Mohd Ismail Abd Aziz, Rohanin Ahmad
Abstract:
A new stochastic algorithm called Probabilistic Global Search Johor (PGSJ) has recently been established for global optimization of nonconvex real valued problems on finite dimensional Euclidean space. In this paper we present convergence guarantee for this algorithm in probabilistic sense without imposing any more condition. Then, we jointly utilize this algorithm along with control parameterization technique for the solution of constrained optimal control problem. The numerical simulations are also included to illustrate the efficiency and effectiveness of the PGSJ algorithm in the solution of control problems.
Keywords: Optimal Control Problem, Constraints, Direct Methods, Stochastic Algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17013472 Modeling and Control of Two Manipulators Handling a Flexible Beam
Authors: Amer S. Al-Yahmadi, T.C. Hsia
Abstract:
This paper seeks to develop simple yet practical and efficient control scheme that enables cooperating arms to handle a flexible beam. Specifically the problem studied herein is that of two arms rigidly grasping a flexible beam and such capable of generating forces/moments in such away as to move a flexible beam along a predefined trajectory. The paper develops a sliding mode control law that provides robustness against model imperfection and uncertainty. It also provides an implicit stability proof. Simulation results for two three joint arms moving a flexible beam, are presented to validate the theoretical results.Keywords: Sliding mode control, cooperative manipulators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16423471 Self-Organizing Control Systems for Unstable and Deterministic Chaotic Processes
Authors: M. A. Beisenbi, N. M. Kissikova, S. E. Beisembina, S. T. Suleimenova, S. A. Kaliyeva
Abstract:
The paper proposes a method for constructing a self-organizing control system for unstable and deterministic chaotic processes in the class of catastrophe “hyperbolic umbilic” for objects with m-inputs and n-outputs. The self-organizing control system is investigated by the universal gradient-velocity method of Lyapunov vector-functions. The conditions for self-organization of the control system in the class of catastrophes “hyperbolic umbilic” are shown in the form of a system of algebraic inequalities that characterize the aperiodic robust stability in the stationary states of the system.
Keywords: Gradient-velocity method of Lyapunov vector-functions, hyperbolic umbilic, self-organizing control system, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4713470 A Genetic Algorithm for Optimum Design of PID Controller in Load Frequency Control
Authors: T. Hussein
Abstract:
In this paper, determining the optimal proportionalintegral- derivative (PID) controller gains of an single-area load frequency control (LFC) system using genetic algorithm (GA) is presented. The LFC is notoriously difficult to control optimally using conventionally tuning a PID controller because the system parameters are constantly changing. It is for this reason the GA as tuning strategy was applied. The simulation has been conducted in MATLAB Simulink package for single area power system. the simulation results shows the effectiveness performance of under various disturbance.Keywords: Load Frequency Control (LFC), PID controller and Genetic Algorithm (GA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37483469 H∞ Fuzzy Integral Power Control for DFIG Wind Energy System
Authors: N. Chayaopas, W. Assawinchaichote
Abstract:
In order to maximize energy capturing from wind energy, controlling the doubly fed induction generator to have optimal power from the wind, generator speed and output electrical power control in wind energy system have a great importance due to the nonlinear behavior of wind velocities. In this paper purposes the design of a control scheme is developed for power control of wind energy system via H∞ fuzzy integral controller. Firstly, the nonlinear system is represented in term of a TS fuzzy control design via linear matrix inequality approach to find the optimal controller to have an H∞ performance are derived. The proposed control method extract the maximum energy from the wind and overcome the nonlinearity and disturbances problems of wind energy system which give good tracking performance and high efficiency power output of the DFIG.Keywords: H∞ fuzzy integral control, linear matrix inequality, wind energy system, doubly fed induction generator (DFIG).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11603468 Trajectory Tracking of a 2-Link Mobile Manipulator Using Sliding Mode Control Method
Authors: Abolfazl Mohammadijoo
Abstract:
In this paper, we are investigating sliding mode control approach for trajectory tracking of a two-link-manipulator with wheeled mobile robot in its base. The main challenge of this work is dynamic interaction between mobile base and manipulator which makes trajectory tracking more difficult than n-link manipulators with fixed base. Another challenging part of this work is to avoid chattering phenomenon of sliding mode control that makes lots of damages for actuators in real industrial cases. The results show the effectiveness of sliding mode control approach for desired trajectory.
Keywords: Mobile manipulator, sliding mode control, dynamic interaction, mobile robotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5413467 Design of EDFA Gain Controller based on Disturbance Observer Technique
Authors: Seong-Ho Song, Ki-Seob Kim, Seon-Woo Lee, Seop-Hyeong Park
Abstract:
Based on a theoretical erbium-doped fiber amplifier (EDFA) model, we have proposed an application of disturbance observer(DOB) with proportional/integral/differential(PID) controller to EDFA for minimizing gain-transient time of wavelength -division-multiplexing (WDM) multi channels in optical amplifier in channel add/drop networks. We have dramatically reduced the gain-transient time to less than 30μsec by applying DOB with PID controller to the control of amplifier gain. The proposed DOB-based gain control algorithm for EDFA was implemented as a digital control system using TI's DSP(TMS320C28346) chip and experimental results of the system verify the excellent performance of the proposed gain control methodology.Keywords: EDFA, Disturbance observer, gain control, WDM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20403466 MIMCA: A Modelling and Simulation Approach in Support of the Design and Construction of Manufacturing Control Systems Using Modular Petri net
Authors: S. Ariffin, K. Hasnan, R.H. Weston
Abstract:
A new generation of manufacturing machines so-called MIMCA (modular and integrated machine control architecture) capable of handling much increased complexity in manufacturing control-systems is presented. Requirement for more flexible and effective control systems for manufacturing machine systems is investigated and dimensioned-which highlights a need for improved means of coordinating and monitoring production machinery and equipment used to- transport material. The MIMCA supports simulation based on machine modeling, was conceived by the authors to address the issues. Essentially MIMCA comprises an organized unification of selected architectural frameworks and modeling methods, which include: NISTRCS, UMC and Colored Timed Petri nets (CTPN). The unification has been achieved; to support the design and construction of hierarchical and distributed machine control which realized the concurrent operation of reusable and distributed machine control components; ability to handle growing complexity; and support requirements for real- time control systems. Thus MIMCA enables mapping between 'what a machine should do' and 'how the machine does it' in a well-defined but flexible way designed to facilitate reconfiguration of machine systems.Keywords: Machine control, architectures, Petri nets, modularity, modeling, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15963465 Modeling and Control Design of a Centralized Adaptive Cruise Control System
Authors: Markus Mazzola, Gunther Schaaf
Abstract:
A vehicle driving with an Adaptive Cruise Control System (ACC) is usually controlled decentrally, based on the information of radar systems and in some publications based on C2X-Communication (CACC) to guarantee stable platoons. In this paper we present a Model Predictive Control (MPC) design of a centralized, server-based ACC-System, whereby the vehicular platoon is modeled and controlled as a whole. It is then proven that the proposed MPC design guarantees asymptotic stability and hence string stability of the platoon. The Networked MPC design is chosen to be able to integrate system constraints optimally as well as to reduce the effects of communication delay and packet loss. The performance of the proposed controller is then simulated and analyzed in an LTE communication scenario using the LTE/EPC Network Simulator LENA, which is based on the ns-3 network simulator.
Keywords: Adaptive Cruise Control, Centralized Server, Networked Model Predictive Control, String Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28423464 Intelligent Control of Robotized Workcell by Augmented Reality Application
Authors: L. Novakova-Marcincinova, J. Novak-Marcincin, M. Janak
Abstract:
The computer aided for design, analysis, control, visualization and simulation of robotized workcells is very interesting in this time. Computer Aided Robot Control (CARC) is a subsystem of the system CIM including the computer aided systems of all activities connected with visualization and working of robotized workcells. There are three basic ideas: current CAD/CAM/CAE systems for design and 3D visualization, special PC based control and simulation systems and Augmented Reality Aided Manufacturing (ARAM) systems. This paper describes example of Open Source software application that can to be utilized at planning of the robotized workcells, visualization and off-line programming the automated processes realized by authors.
Keywords: Intelligent control, augmented reality, robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17703463 Speed Control of Permanent Magnet Synchronous Motor Using Evolutionary Fuzzy PID Controller
Authors: M. Umabharathi, S. Vijayabaskar
Abstract:
Evolutionary Fuzzy PID Speed Controller for Permanent Magnet Synchronous Motor (PMSM) is developed to achieve the Speed control of PMSM in Closed Loop operation and to deal with the existence of transients. Consider a Fuzzy PID control design problem, based on common control Engineering Knowledge. If the transient error is big, that Good transient performance can be obtained by increasing the P and I gains and decreasing the D gains. To autotune the control parameters of the Fuzzy PID controller, the Evolutionary Algorithms (EA) are developed. EA based Fuzzy PID controller provides better speed control and guarantees the closed loop stability. The Evolutionary Fuzzy PID controller can be implemented in real time Applications without any concern about instabilities that leads to system failure or damage.
Keywords: Evolutionary Algorithm (EA), Fuzzy system, Genetic Algorithm (GA), Membership, Permanent Magnet Synchronous Motor (PMSM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29723462 SOA-Based Mobile Application for Crime Control in Thailand
Authors: Jintana Khemprasit, Vatcharaporn Esichaikul
Abstract:
Crime is a major societal problem for most of the world's nations. Consequently, the police need to develop new methods to improve their efficiency in dealing with these ever increasing crime rates. Two of the common difficulties that the police face in crime control are crime investigation and the provision of crime information to the general public to help them protect themselves. Crime control in police operations involves the use of spatial data, crime data and the related crime data from different organizations (depending on the nature of the analysis to be made). These types of data are collected from several heterogeneous sources in different formats and from different platforms, resulting in a lack of standardization. Moreover, there is no standard framework for crime data collection, integration and dissemination through mobile devices. An investigation into the current situation in crime control was carried out to identify the needs to resolve these issues. This paper proposes and investigates the use of service oriented architecture (SOA) and the mobile spatial information service in crime control. SOA plays an important role in crime control as an appropriate way to support data exchange and model sharing from heterogeneous sources. Crime control also needs to facilitate mobile spatial information services in order to exchange, receive, share and release information based on location to mobile users anytime and anywhere.Keywords: Crime Control, Geographic Information System (GIS), Mobile GIS, Service Oriented Architecture (SOA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25423461 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objectives
Authors: Mingyu Xie, Mietek Brdys
Abstract:
The paper develops a Non-Linear Model Predictive Control (NMPC) of water quality in Drinking Water Distribution Systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.Keywords: Model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24903460 Battery Energy Storage System Economic Benefits Assessment on a Network Frequency Control
Authors: Kréhi Serge Agbli, Samuel Portebos, Michaël Salomon
Abstract:
Here a methodology is considered aiming at evaluating the economic benefit of the provision of a primary frequency control unit using a Battery Energy Storage System (BESS). In this methodology, two control types (basic and hysteresis) are implemented and the corresponding minimum energy storage system power allowing to maintain the frequency drop inside a given threshold under a given contingency is identified and compared using DigSilent’s PowerFactory software. Following this step, the corresponding energy storage capacity (in MWh) is calculated. As PowerFactory is dedicated to dynamic simulation for transient analysis, a first order model related to the IEEE 9 bus grid used for the analysis under PowerFactory is characterized and implemented on MATLAB-Simulink. Primary frequency control is simulated using the two control types over one-month grid's frequency deviation data on this Simulink model. This simulation results in the energy throughput both basic and hysteresis BESSs. It emerges that the 15 minutes operation band of the battery capacity allocated to frequency control is sufficient under the considered disturbances. A sensitivity analysis on the width of the control deadband is then performed for the two control types. The deadband width variation leads to an identical sizing with the hysteresis control showing a better frequency control at the cost of a higher delivered throughput compared to the basic control. An economic analysis comparing the cost of the sized BESS to the potential revenues is then performed.Keywords: Battery Energy Storage System, electrical network frequency stability, frequency control unit, PowerFactory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 820