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Abstract—The paper proposes a method for constructing a self-
organizing control system for unstable and deterministic chaotic
processes in the class of catastrophe “hyperbolic umbilic” for objects
with m-inputs and n-outputs. The self-organizing control system is
investigated by the universal gradient-velocity method of Lyapunov
vector-functions. The conditions for self-organization of the control
system in the class of catastrophes “hyperbolic umbilic” are shown in
the form of a system of algebraic inequalities that characterize the
aperiodic robust stability in the stationary states of the system.
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1. INTRODUCTION

T is now generally accepted that real control objects are

nonlinear or linearized and deterministic chaos with the
generation of a “strange attractor” and instability are an internal
property of any dynamic system [1]-[3]. In nonlinear systems,
when a deterministic chaos is generated, the trajectories of the
system are globally limited and locally unstable inside the
“strange attractor” [2], [3]. Chaotic and unstable systems
represent a class of uncertainty models. The ability of a system
to maintain stability in uncertain environment is understood as
robust stability [4], [S]. When going beyond the confines of the
robust stability domain of uncertain parameters, the system
gives rise to a mode of deterministic chaos and instability [6]-
[8]. In the mode of deterministic chaos and instability, control
objects will lose their “controllability”. Therefore, the
construction of a control system in the class of catastrophes, a
hyperbolic umbilic [9], in the form of self-organizing control
systems under uncertainty is the main factor guaranteeing for
control system the protection from the mode of deterministic
chaos and instability [8], [10].

Self-organizing control systems for unstable and
deterministic chaotic processes in the class of catastrophes the
hyperbolic umbilic are studied by the universal gradient-
velocity method of the Lyapunov vector function [7], [11].

The gradient-velocity method of the Lyapunov’s vector
function is based on the Morse lemma from catastrophe theory
and on the basic equation of gradient dynamical systems [9].
4
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This equation directly connects the required Lyapunov
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function V(x) = (V1(x), ..., V,(x)) with the equation of state of a
dynamical system. It should be noted that the aperiodic stability
of the stationary states of the control system is investigated and
the areas of aperiodic robust stability of these stationary states
are determined.

II. FORMULATION OF A PROBLEM

The problem of studying a multivariable self-organizing
control system in the catastrophe class "hyperbolic umbilic" for
linearized objects with m inputs and n outputs is considered.

Let the control system be represented by the equations:

dx

E=Ax+Bu,

(1)
y =Cx,

where x (t) € R™: control system state vector; u (t) € R™:
vector function of control actions; y (t) € R: the output vector
of the system of dimensions 1; A € R™™: nxn control object
matrix; B € R™™: mxn control matrix; C € R™™: output
matrix of the control system of dimension Ixn.

The first equation of the control system contains all the
dynamics of the system, while the second equation of the output
is a static dependence. To study the dynamic properties, only
the first equation is considered.

Let the matrices A and B be given in the following form:

nay; Az Qg QAinyy 11by, 0 .. 0y
Gz1 Gy Qg3 Azn 0 by 0 .. O
A=|[41 043z dass A3n||,B=|[ 0 0 by O
An1  Qpz  Qpz Ann 0 0 0 bun

The law of control is given in the form of catastrophe the
“hyperbolic umbilic” (a three-parameter structurally stable

mapping) [9]:

— 3 3 1 2
wi(t) = =x;7 — Xiyq — ke Xixiper + kixp + kixigq,
i=1,..,n

2)

The first equation of system (1) with allowance for the law
of control (2) in expanded form is written as follows:
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dxy
dat
+(aq1 + bikDxy + (a12 + by kF)x, +

+a13X3 + -+ AnXn

_ 3 3
= —by1x7 — by1X3 — byikypx1x, +

dxz
dt
+(az1 + bazk3)x; + (az; + byzk3)x, +

+az3xz + o+ azpx,

_ 3 3
= —byaxi — byyxs — byokipx1x, +

3)

dax.

d—t” = Ap1X1 + ApaXy + ApzXz + o0 —
3

- bnnxn -

3
_bnnxn—l bnnkn—l,nxn—lxn +

+(an,n—1 + bnnkrll)xn—l + (ann + bnnkrzl)xn

System (3) has stationary states [9]:
xlls =0, les =0, x%s =0, __.’x_rlls =0 4)
and other stationary states [9]-[11]:

23 1 f
Xis +§ kll + x(l+1)$ = 0,

4 1 2 al,t+1
(I + 2y

©)

Xis = Feiivq
The aperiodic robust stability of the stationary state (4) and

(5) of system (3) is studied by the gradient-velocity method of
the Lyapunov’s vector function [7], [11]-[13].

III. RESEARCH METHODS

From the equation of state (3) we determine the components
of the gradient vectors from the Lyapunov vector function

V(x) = (Vl(x), ...,Vn(x)) [11]:

i) 1 a;
ox, bix} + 2 bitki i1 XiXivs = by (kl l’) x;,
j=i=1..,nj=1,..,

Vi) 1
Tox; bigxlyy + 3 btk Xixivn — by (kz )xp

j=it+Li=1.,mj=1.,n (©)

av; (x)
ax; %
j#i j#i+Li=Tnj=1n

From the equation of state (3), the expansion of the velocity
vector components in terms of the coordinates of system (3) is
determined [11]:

dx; _ 1 a”
(E) - bu bllkll+1x Xiy1 T bu (k b Xj

Xj ii

,
forj=ii=1nj=1n

dx; _ 3 1 2 %
(g) = =byxiyy = 5 bk XiXier + by (ki +50)%

x]- i

’ 7
forj=i+1L i=1nj=1n )

axi)
)y, aij%;,

forj+#i; j#i+1;
i=1nj=1n
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The total time derivative of the Lyapunov vector function is
calculated as the scalar product of the gradient vector (6) by the
expansion of the velocity vector components (7):

av(x) _
at

1 a
§k12x1x2 - (kz 12) xz] —af3xf —
1 2 .2 2 .2
5k12x1x2 (kz ) Xxq]? == apxf — appxy — =
b2, x3_, +2k — (k2 4 Znnt ’
-1 2 ffn—1nXn-1%n b Xn-1

[xr% + %kn—l,nxn—lxn - (kz + aﬂ) ] 3

1 a
—b3xd + Skazx1x, — (k1 “) x, — b?, [xg +

2 2 _p2 [.3
= aipXxy — by [x1+

— b2, x

Function (8) is a sign-negative function; that is, the sufficient
condition for the aperiodic stability of system (3) is satisfied.

From (6), the components of the gradient vectors are used to
construct the Lyapunov vector function in scalar form:

11)

b
a12),2_

+7 b11x2+ Fhi1k1ox1x3— 2b11(k1+ 1) 2~

V(x)= ‘b11x1 +2 b11k12x1x2 Zbu(

—Ea13x3 —"‘—§a1nxn+ —Eamxl _Eanzxz -

9

1 2 1 4 1 2
= T30nn-2Xn_2t7 bnnXxpn— 1+‘bnnkn 1nXp—-1Xn—

b

><xn—1xn——;bnn(kn +m)xn

1 ann 1
_Ebnn(kl nn )xn 1+ bnnxn"’ bnnkn 1,nX

By the form of function (9) existence condition of the
Lyapunov function, that is, its positive definiteness is not
obvious, but function (9) is a continuously differentiable
function and at the origin of coordinates turns to zero; that is, it
satisfies the conditions of the Morse lemma from catastrophe
theory [9]. In accordance with the Morse lemma, function (9)
can be locally represented in the neighborhood of the origin in
the form of a quadratic form:

V(x)~—[bi1ki+as1+baaki+azitazy+-+
+anilxf-[b11k3+arz+baoks +aza+azy++
_anz]x%_"'_[bn—l,n—lkrlt"'an—l,n"'bnnk%‘*‘

_ann+a1n+"'+an—2,n]xrzl

(10)

Existence condition of the Lyapunov function; that is,
positive definiteness of the Lyapunov vector function is given
by the system of inequalities:

—[bllk%-l-bzzk% +aq1+azi+-+ay1]>0
—[bnk%-{-bzzk% +aqp+ax++ay]>0

—[b kL bypk2+aiy++an,]>0

(11

n—1,n—-1

The aperiodic robust stability of the stationary state (5) of
system (3) is investigated by the gradient-velocity method of
the Lyapunov vector function [7], [11]-[13]. To do this, we
write system (3) in deviations relative to the stationary state (5):
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dx1 _
= —b11x1 b11xz — by1kipx1x, —

—3by1 ,kl — —3b11,

—2by, (k1 ““) —2by, (k1 ““)x2+
+a3x3 + -+ agpx,

dx.
—2 = —byx} —

—3by, /kl +%x1 —3by, /k “—

_ L), 49z
2y, (K3 +52) %1 = 2byp (K3 + bzz)xz +
+az3x3 + -+ AypXy

bzzxz — bazkizx1%; —

(12)

dxn _ 3 3

at An1Xy + ApaXp + -+ + bnnxn—l - bnnxn -
1 Ann-1 .2

_bnnkn—l,nxn—lxn - b k b . > Xn-1—

~3byy |12 + 5 —ann(kl %)xn_l—

—~2byn (KE + 22 2

From (12) the components of the gradient vectors from the

Lyapunov vector function V(x) = (V3(x),..,V,(x)) are
determined.
avi(x) 1
7; = byx; + 2 biikiipaXiXip +
+3b;; ki1+“” 2+ 2by (K} + “”)x,-
forj=ii=1..,nj=1,.
av;(x)
ax,x = buxiyy +3 buku+1x Xipy + (13)

aij
+3by; /kz &y l+1+2b”(k2 b)x,

fOT‘}=l+1‘i=1... nj=1,..,n

6V(x)
o1, = —aq;jxj, for j # i
j#Fi+Li=1..,nj=1..,n

The Lyapunov vector function is determined in scalar form
by the components of the gradient (13) in the following form:

V(x)= b11x1+ Ibirkizx2x,+byg /k1+£x§+

+byy (ki +aﬁ)x1 +3b11 04 +3b11 ki x X3+

+b1q K2 +ﬁx§ +b11(k1 +m)x% ——a13x3

2
- "'—§a1nxn—"'—§anlx1 —ganzxz -t

(14)

1 4 1 2
+7bnnXn—1+bnnkn—1,nXn-1Xn+bnnX

ann 1 ann 1

x [kh+ by xn 1+bnn(kn b

ko +

+‘bnnxn +‘bnnkn—1 nXn_1X5+
- FH by (I +5 )R

As can be seen from (14), the conditions for the positive or
negative definiteness of the Lyapunov function are not obvious,
as a result of which we apply the Morse lemma [9]. In this case,
we write the Lyapunov function (14) locally in the
neighborhood of stationary states (5) in the form of a quadratic
form:

International Scholarly and Scientific Research & Innovation 16(8) 2022

V(x)=[bi1ki+ar1+bazki+az +az ++
+anilxf+[bi1k3+arz+baaks +azataz++

2 1 2
+apzlx; +'“+[bn—l,n—lkn+an—1,n+bnnkn+

(15)

+apntaint-+an—an|xi

Then from (15) the condition of positive definiteness of the
Lyapunov function, that is the necessary condition for aperiodic
robust stability will be determined by the inequalities:

by1k}i+bozk?+agq+az ++an,>0
bi1k3+byzk3+ay,+ag,++any>0

(16)

bp—1n-1ks+bpnk2+ain+-+ann>0

To summarize, it can be observed that the stability of the
control system built in the catastrophe class "hyperbolic
umbilic" is in an infinitely wide range of changes in the
uncertain parameters of the control object. The existence and
stability of the stationary state (4) is possible when the uncertain
parameters of the control object in the region (11) change. In
the case of loss of stability of this stationary state, other
stationary states are generated (5) and their existence
simultaneously is impossible. The last stationary states (5) will
be stable when the system of inequalities (16) is satisfied.

Carried out studies show that a self-organizing control
system with m inputs and n outputs is a periodically stable at
any changes in the undetermined parameter of the system.

IV. CONCLUSION

Real dynamic control objects are mostly non-linear or
linearized, and control systems are constructed and operated
under uncertainty. The ability of a control system to maintain
stability under uncertainty is understood as robust stability.
When going beyond the confines of the robust stability domain
of uncertain parameters, instability and a deterministic chaotic
regime with the generation of a “strange attractor” are generated
in the system. A practically important class of problems arises
when an unstable and deterministic chaotic process must be
controlled, completely suppressing instabilities and the degree
of chaotic state. Therefore, a self-organizing control system in
the class of catastrophes "hyperbolic umbilic" is the main
protection against the mode of deterministic chaos and
instability.

Control systems in the class of catastrophes "hyperbolic
umbilic" have several stable stationary states. These stationary
states do not exist at the same time and are not stable at the same
time. If the undetermined parameters change, then the system
passes from one stable stationary state to another due to
"bifurcations". In this case, the initial stationary state loses its
robust stability, and the other stationary state takes on the
properties of robust stability. Consequently, self-organization
occurs in the system and unstable and deterministic chaotic
modes are excluded from the scenarios of process development
in the system.

Consideration of a self-organizing control system in the
hyperbolic umbilic catastrophe class as gradient dynamical
systems, and Lyapunov functions as potential functions from
catastrophe theory, made it possible to propose a universal
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approach to constructing the Lyapunov vector function. The
application of the Morse lemma to the Lyapunov vector
function allows us to represent the conditions for aperiodic
robust stability of the system in the form of a system of
algebraic inequalities regarding the undetermined and settable
parameters of the controller.
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