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Abstract—The paper proposes a method for constructing a self-

organizing control system for unstable and deterministic chaotic 
processes in the class of catastrophe “hyperbolic umbilic” for objects 
with m-inputs and n-outputs. The self-organizing control system is 
investigated by the universal gradient-velocity method of Lyapunov 
vector-functions. The conditions for self-organization of the control 
system in the class of catastrophes “hyperbolic umbilic” are shown in 
the form of a system of algebraic inequalities that characterize the 
aperiodic robust stability in the stationary states of the system. 
 

Keywords—Gradient-velocity method of Lyapunov vector-
functions, hyperbolic umbilic, self-organizing control system, 
stability.  

I. INTRODUCTION 

T is now generally accepted that real control objects are 
nonlinear or linearized and deterministic chaos with the 

generation of a “strange attractor” and instability are an internal 
property of any dynamic system [1]-[3]. In nonlinear systems, 
when a deterministic chaos is generated, the trajectories of the 
system are globally limited and locally unstable inside the 
“strange attractor” [2], [3]. Chaotic and unstable systems 
represent a class of uncertainty models. The ability of a system 
to maintain stability in uncertain environment is understood as 
robust stability [4], [5]. When going beyond the confines of the 
robust stability domain of uncertain parameters, the system 
gives rise to a mode of deterministic chaos and instability [6]-
[8]. In the mode of deterministic chaos and instability, control 
objects will lose their “controllability”. Therefore, the 
construction of a control system in the class of catastrophes, a 
hyperbolic umbilic [9], in the form of self-organizing control 
systems under uncertainty is the main factor guaranteeing for 
control system the protection from the mode of deterministic 
chaos and instability [8], [10]. 

Self-organizing control systems for unstable and 
deterministic chaotic processes in the class of catastrophes the 
hyperbolic umbilic are studied by the universal gradient-
velocity method of the Lyapunov vector function [7], [11]. 

The gradient-velocity method of the Lyapunov’s vector 
function is based on the Morse lemma from catastrophe theory 
and on the basic equation of gradient dynamical systems [9]. 
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డ௫೔
, 𝑖 ൌ 1, … , 𝑛 

 
This equation directly connects the required Lyapunov 
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function 𝑉ሺ𝑥ሻ ൌ ൫𝑉ଵሺ𝑥ሻ, … , 𝑉௡ሺ𝑥ሻ൯ with the equation of state of a 
dynamical system. It should be noted that the aperiodic stability 
of the stationary states of the control system is investigated and 
the areas of aperiodic robust stability of these stationary states 
are determined. 

II. FORMULATION OF A PROBLEM 

The problem of studying a multivariable self-organizing 
control system in the catastrophe class "hyperbolic umbilic" for 
linearized objects with m inputs and n outputs is considered. 

Let the control system be represented by the equations: 
 
ௗ௫

ௗ௧
ൌ 𝐴𝑥 ൅ 𝐵𝑢,  (1) 

 
𝑦 ൌ 𝐶𝑥, 
 

where 𝑥 ሺ𝑡ሻ ∈ 𝑅௡: control system state vector; 𝑢 ሺ𝑡ሻ ∈ 𝑅௠: 
vector function of control actions; 𝑦 ሺ𝑡ሻ ∈ 𝑅௟: the output vector 
of the system of dimensions l; 𝐴 ∈ 𝑅௡ൈ௡: n×n control object 
matrix; 𝐵 ∈ 𝑅௠ൈ௡: m×n control matrix; 𝐶 ∈ 𝑅௟ൈ௡: output 
matrix of the control system of dimension l×n. 

The first equation of the control system contains all the 
dynamics of the system, while the second equation of the output 
is a static dependence. To study the dynamic properties, only 
the first equation is considered. 

Let the matrices A and B be given in the following form: 
 

𝐴 ൌ ቱቱ

𝑎ଵଵ
𝑎ଶଵ
𝑎ଷଵ
…

𝑎௡ଵ

𝑎ଵଶ
𝑎ଶଶ
𝑎ଷଶ
…

𝑎௡ଶ

𝑎ଵଷ
𝑎ଶଷ
𝑎ଷଷ
…

𝑎௡ଷ

…
…
……
…

𝑎ଵ௡
𝑎ଶ௡
𝑎ଷ௡
…

𝑎௡௡

ቱቱ , 𝐵 ൌ ቱ
ቱ

𝑏ଵଵ
0
0
…
0

0
𝑏ଶଶ
0
…
0

0
0

𝑏ଷଷ
…
0

…
……
…
…

0
0
0
…

𝑏௡௡

ቱ
ቱ  

 
The law of control is given in the form of catastrophe the 

“hyperbolic umbilic” (a three-parameter structurally stable 
mapping) [9]: 

 
𝑢௜ሺ𝑡ሻ ൌ െ𝑥௜

ଷ െ 𝑥௜ାଵ
ଷ െ 𝑘௜,௜ାଵ𝑥௜𝑥௜ାଵ ൅ 𝑘௜

ଵ𝑥௜ ൅ 𝑘௜
ଶ𝑥௜ାଵ,  (2) 

 𝑖 ൌ 1, … , 𝑛  
 
The first equation of system (1) with allowance for the law 

of control (2) in expanded form is written as follows: 
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ௗ௫భ

ௗ௧
ൌ െ𝑏ଵଵ𝑥ଵ

ଷ െ 𝑏ଵଵ𝑥ଶ
ଷ െ 𝑏ଵଵ𝑘ଵଶ𝑥ଵ𝑥ଶ ൅

൅ሺ𝑎ଵଵ ൅ 𝑏ଵଵ𝑘ଵ
ଵሻ𝑥ଵ ൅ ሺ𝑎ଵଶ ൅ 𝑏ଵଵ𝑘ଵ

ଶሻ𝑥ଶ ൅
൅𝑎ଵଷ𝑥ଷ ൅ ⋯ ൅ 𝑎ଵ௡𝑥௡

ௗ௫మ

ௗ௧
ൌ െ𝑏ଶଶ𝑥ଵ

ଷ െ 𝑏ଶଶ𝑥ଶ
ଷ െ 𝑏ଶଶ𝑘ଵଶ𝑥ଵ𝑥ଶ ൅

൅ሺ𝑎ଶଵ ൅ 𝑏ଶଶ𝑘ଶ
ଵሻ𝑥ଵ ൅ ሺ𝑎ଶଶ ൅ 𝑏ଶଶ𝑘ଶ

ଶሻ𝑥ଶ ൅
൅𝑎ଶଷ𝑥ଷ ൅ ⋯ ൅ 𝑎ଶ௡𝑥௡

⋮
ௗ௫೙

ௗ௧
ൌ 𝑎௡ଵ𝑥ଵ ൅ 𝑎௡ଶ𝑥ଶ ൅ 𝑎௡ଷ𝑥ଷ ൅ ⋯ െ

െ𝑏௡௡𝑥௡ିଵ
ଷ െ 𝑏௡௡𝑥௡

ଷ െ 𝑏௡௡𝑘௡ିଵ,௡𝑥௡ିଵ𝑥௡ ൅

൅൫𝑎௡,௡ିଵ ൅ 𝑏௡௡𝑘௡
ଵ൯𝑥௡ିଵ ൅ ሺ𝑎௡௡ ൅ 𝑏௡௡𝑘௡

ଶሻ𝑥௡

  (3) 

 
System (3) has stationary states [9]: 
 
𝑥ଵ௦

ଵ ൌ 0, 𝑥ଶ௦
ଵ ൌ 0, 𝑥ଷ௦

ଵ ൌ 0, … , 𝑥௡௦
ଵ ൌ 0  (4) 

 
and other stationary states [9]-[11]: 

 

𝑥௜௦
ଶ,ଷ ൌ േ ଵ

ଷ ට𝑘௜
ଵ ൅ ௔೔೔

௕೔೔
, 𝑥ሺ௜ାଵሻ௦ ൌ 0,  (5) 

𝑥௜௦
ସ ൌ ଵ

௞೔,೔శభ
ሺ𝑘௜

ଶ ൅
௔೔,೔శభ

௕೔೔
ሻ  

 
The aperiodic robust stability of the stationary state (4) and 

(5) of system (3) is studied by the gradient-velocity method of 
the Lyapunov’s vector function [7], [11]-[13].  

III. RESEARCH METHODS 

From the equation of state (3) we determine the components 
of the gradient vectors from the Lyapunov vector function 
𝑉ሺ𝑥ሻ ൌ ൫𝑉ଵሺ𝑥ሻ, … , 𝑉௡ሺ𝑥ሻ൯ [11]: 
 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

డ௏೔ሺ௫ሻ

డ௫ೕ
ൌ 𝑏௜௜𝑥௜

ଷ ൅
ଵ

ଶ
𝑏௜௜𝑘௜,௜ାଵ𝑥௜𝑥௜ାଵ െ 𝑏௜௜ ቀ𝑘௜

ଵ ൅
௔೔ೕ

௕೔೔
ቁ 𝑥௝,

 𝑗 ൌ 𝑖;  𝑖 ൌ 1, … , 𝑛; 𝑗 ൌ 1, … , 𝑛       
డ௏೔ሺ௫ሻ

డ௫ೕ
ൌ 𝑏௜௜𝑥௜ାଵ

ଷ ൅
ଵ

ଶ
𝑏௜௜𝑘௜,௜ାଵ𝑥௜𝑥௜ାଵ െ 𝑏௜௜ ቀ𝑘௜

ଶ ൅
௔೔ೕ

௕೔೔
ቁ 𝑥௝,

 𝑗 ൌ 𝑖 ൅ 1;  𝑖 ൌ 1, … , 𝑛; 𝑗 ൌ 1, … , 𝑛   
డ௏೔ሺ௫ሻ

డ௫ೕ
ൌ െ𝑎௜௝𝑥௝,

 𝑗 ് 𝑖;   𝑗 ് 𝑖 ൅ 1; 𝑖 ൌ 1, 𝑛തതതതത; 𝑗 ൌ 1, 𝑛തതതതത
                                                              

 (6) 

 
From the equation of state (3), the expansion of the velocity 

vector components in terms of the coordinates of system (3) is 
determined [11]: 

 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ ቀ

ௗ௫೔

ௗ௧
ቁ

௫ೕ

ൌ െ𝑏௜௜𝑥௜
ଷ െ

ଵ

ଶ
𝑏௜௜𝑘௜,௜ାଵ𝑥௜𝑥௜ାଵ ൅ 𝑏௜௜ ቀ𝑘௜

ଵ ൅
௔೔ೕ

௕೔೔
ቁ 𝑥௝

,
𝑓𝑜𝑟 𝑗 ൌ 𝑖;  𝑖 ൌ 1, 𝑛തതതതത; 𝑗 ൌ 1, 𝑛തതതതത

            
ቀ

ௗ௫೔

ௗ௧
ቁ

௫ೕ

ൌ െ𝑏௜௜𝑥௜ାଵ
ଷ െ ଵ

ଶ
𝑏௜௜𝑘௜,௜ାଵ𝑥௜𝑥௜ାଵ ൅ 𝑏௜௜ ቀ𝑘௜

ଶ ൅
௔೔ೕ

௕೔೔
ቁ 𝑥௝

,
 𝑓𝑜𝑟 𝑗 ൌ 𝑖 ൅ 1;  𝑖 ൌ 1, 𝑛തതതതത; 𝑗 ൌ 1, 𝑛തതതതത

   
ቀ

ௗ௫೔

ௗ௧
ቁ

௫ೕ

ൌ 𝑎௜௝𝑥௝,

𝑓𝑜𝑟 𝑗 ് 𝑖;   𝑗 ് 𝑖 ൅ 1;
𝑖 ൌ 1, 𝑛തതതതത; 𝑗 ൌ 1, 𝑛തതതതത

                                                                    

  (7) 

The total time derivative of the Lyapunov vector function is 
calculated as the scalar product of the gradient vector (6) by the 
expansion of the velocity vector components (7): 

 
ௗ௏ሺ௫ሻ

ௗ௧
ൌ െ𝑏ଵଵ

ଶ 𝑥ଵ
ଷ ൅

ଵ

ଶ
𝑘ଵଶ𝑥ଵ𝑥ଶ െ ቀ𝑘ଵ

ଵ ൅
௔భభ

௕భభ
ቁ 𝑥ଵ െ 𝑏ଵଵ

ଶ ቂ𝑥ଶ
ଷ ൅

ଵ

ଶ
𝑘ଵଶ𝑥ଵ𝑥ଶ െ ቀ𝑘ଵ

ଶ ൅
௔భమ

௕భభ
ቁ 𝑥ଶቃ

ଶ
െ 𝑎ଵଷ

ଶ 𝑥ଷ
ଶ െ ⋯ െ 𝑎ଵ௡

ଶ 𝑥௡
ଶ െ 𝑏ଶଶ

ଶ ቂ𝑥ଵ
ଷ ൅

ଵ

ଶ
𝑘ଵଶ𝑥ଵ𝑥ଶ െ ቀ𝑘ଶ

ଵ ൅
௔మభ

௕మమ
ቁ ൈ 𝑥ଵሿଶ െ ⋯ െ 𝑎௡ଵ

ଶ 𝑥ଵ
ଶ െ 𝑎௡ଶ

ଶ 𝑥ଶ
ଶ െ ⋯ െ

𝑏௡௡
ଶ ሾ𝑥௡ିଵ

ଷ ൅
ଵ

ଶ
𝑘௡ିଵ,௡𝑥௡ିଵ𝑥௡ െ ቀ𝑘௡

ଵ ൅
௔೙,೙షభ

௕೙೙
ቁ 𝑥௡ିଵቃ

ଶ
െ 𝑏௡௡

ଶ ൈ

ቂ𝑥௡
ଷ ൅

ଵ

ଶ
𝑘௡ିଵ,௡𝑥௡ିଵ𝑥௡ െ ቀ𝑘௡

ଶ ൅
௔೙೙

௕೙೙
ቁ 𝑥௡ቃ

ଶ
 (8) 

 
Function (8) is a sign-negative function; that is, the sufficient 

condition for the aperiodic stability of system (3) is satisfied. 
From (6), the components of the gradient vectors are used to 

construct the Lyapunov vector function in scalar form: 
 

௏ሺ௫ሻୀ 
భ
ర

௕భభ௫భ
రା

భ
ర

௕భభ௞భమ௫భ
మ௫మି

భ
మ

௕భభቀ௞భ
భା

ೌభభ
್భభ

ቁ௫భ
మା

ା
భ
ర

௕భభ௫మ
రା

భ
ర

௕భభ௞భమ௫భ௫మ
మି

భ
మ

௕భభቀ௞భ
మା

ೌభమ
್భభ

ቁ௫మ
మି

ି
భ
మ

௔భయ௫య
మି⋯ି

భ
మ

௔భ೙௫೙
మା⋯ି

భ
మ

௔೙భ௫భ
మି

భ
మ

௔೙మ௫మ
మି

…ି
భ
మ

௔೙,೙షమ௫೙షమ
మ ା

భ
ర

௕೙೙௫೙షభ
ర ା

భ
ర

௕೙೙௞೙షభ,೙௫೙షభ
మ ௫೙ି

ି
భ
మ

௕೙೙ቀ௞೙
భା

ೌ೙,೙షభ
್೙೙

ቁ௫೙షభ
మ ା

భ
ర

௕೙೙௫೙
రା

భ
ర

௕೙೙௞೙షభ,೙ൈ

ൈ௫೙షభ௫೙
మିି

భ
మ

௕೙೙ቀ௞೙
మା

ೌ೙೙
್೙೙

ቁ௫೙
మ

  (9) 

 
By the form of function (9) existence condition of the 

Lyapunov function, that is, its positive definiteness is not 
obvious, but function (9) is a continuously differentiable 
function and at the origin of coordinates turns to zero; that is, it 
satisfies the conditions of the Morse lemma from catastrophe 
theory [9]. In accordance with the Morse lemma, function (9) 
can be locally represented in the neighborhood of the origin in 
the form of a quadratic form: 
 

௏ሺ௫ሻൎିൣ௕భభ௞భ
భା௔భభା௕మమ௞భ

మା௔మభା௔యభା⋯ା

ା௔೙భሿ௫భ
మିൣ௕భభ௞మ

భା௔భమା௕మమ௞మ
మା௔మమା௔యమା⋯ା

ି௔೙మሿ௫మ
మି⋯ିൣ௕೙షభ,೙షభ௞೙

భା௔೙షభ,೙ା௕೙೙௞೙
మା

ି௔೙೙ା௔భ೙ା⋯ା௔೙షమ,೙൧௫೙
మ

 (10) 

 
Existence condition of the Lyapunov function; that is, 

positive definiteness of the Lyapunov vector function is given 
by the system of inequalities: 
 

ቐ

െሾ𝑏11𝑘1
1൅𝑏22𝑘1

2൅𝑎11൅𝑎21൅⋯൅𝑎𝑛1ሿ൐0

െሾ𝑏11𝑘2
1൅𝑏22𝑘2

2൅𝑎12൅𝑎22൅⋯൅𝑎𝑛2ሿ൐0
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

െሾ𝑏𝑛െ1,𝑛െ1𝑘𝑛
1൅𝑏𝑛𝑛𝑘𝑛

2൅𝑎1𝑛൅⋯൅𝑎𝑛𝑛ሿ൐0

  (11) 

 
The aperiodic robust stability of the stationary state (5) of 

system (3) is investigated by the gradient-velocity method of 
the Lyapunov vector function [7], [11]-[13]. To do this, we 
write system (3) in deviations relative to the stationary state (5): 
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⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
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ௗ௫భ

ௗ௧
ൌ െ𝑏ଵଵ𝑥ଵ

ଷ െ 𝑏ଵଵ𝑥ଶ
ଷ െ 𝑏ଵଵ𝑘ଵଶ𝑥ଵ𝑥ଶ െ

െ3𝑏ଵଵට𝑘ଵ
ଵ ൅

௔భభ

௕భభ
𝑥ଵ

ଶ െ 3𝑏ଵଵට𝑘ଵ
ଶ ൅

௔భమ

௕భభ
െ

െ2𝑏ଵଵ ቀ𝑘ଵ
ଵ ൅ ௔భభ

௕భభ
ቁ 𝑥ଵ െ 2𝑏ଵଵ ቀ𝑘ଵ

ଶ ൅ ௔భమ

௕భభ
ቁ 𝑥ଶ ൅

൅𝑎ଵଷ𝑥ଷ ൅ ⋯ ൅ 𝑎ଵ௡𝑥௡
ௗ௫మ

ௗ௧
ൌ െ𝑏ଶଶ𝑥ଵ

ଷ െ 𝑏ଶଶ𝑥ଶ
ଷ െ 𝑏ଶଶ𝑘ଵଶ𝑥ଵ𝑥ଶ െ

െ3𝑏ଶଶට𝑘ଶ
ଵ ൅

௔మభ

௕మమ
𝑥ଵ

ଶ െ 3𝑏ଶଶට𝑘ଶ
ଶ ൅

௔మమ

௕మమ
െ

െ2𝑏ଶଶ ቀ𝑘ଶ
ଵ ൅ ௔మభ

௕మమ
ቁ 𝑥ଵ െ 2𝑏ଶଶ ቀ𝑘ଶ

ଶ ൅ ௔మమ

௕మమ
ቁ 𝑥ଶ ൅

൅𝑎ଶଷ𝑥ଷ ൅ ⋯ ൅ 𝑎ଶ௡𝑥௡
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

ௗ௫೙

ௗ௧
ൌ 𝑎௡ଵ𝑥ଵ ൅ 𝑎௡ଶ𝑥ଶ ൅ ⋯ ൅ 𝑏௡௡𝑥௡ିଵ

ଷ െ 𝑏௡௡𝑥௡
ଷ െ

െ𝑏௡௡𝑘௡ିଵ,௡𝑥௡ିଵ𝑥௡ െ 3𝑏௡௡ට𝑘௡
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  (12) 

 
From (12) the components of the gradient vectors from the 

Lyapunov vector function 𝑉ሺ𝑥ሻ ൌ ൫𝑉ଵሺ𝑥ሻ, … , 𝑉௡ሺ𝑥ሻ൯ are 
determined. 
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  (13) 

 
The Lyapunov vector function is determined in scalar form 

by the components of the gradient (13) in the following form: 
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  (14) 

 
As can be seen from (14), the conditions for the positive or 

negative definiteness of the Lyapunov function are not obvious, 
as a result of which we apply the Morse lemma [9]. In this case, 
we write the Lyapunov function (14) locally in the 
neighborhood of stationary states (5) in the form of a quadratic 
form: 

௏ሺ௫ሻൎൣ௕భభ௞భ
భା௔భభା௕మమ௞భ

మା௔మభା௔యభା⋯ା

ା௔೙భሿ௫భ
మାൣ௕భభ௞మ
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మା௔మమା௔యమା⋯ା

ା௔೙మሿ௫మ
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భା௔೙షభ,೙ା௕೙೙௞೙
మା

ା௔೙೙ା௔భ೙ା⋯ା௔೙షమ,೙൧௫೙
మ

  (15) 

 
Then from (15) the condition of positive definiteness of the 

Lyapunov function, that is the necessary condition for aperiodic 
robust stability will be determined by the inequalities: 
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⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

௕೙షభ,೙షభ௞೙
భା௕೙೙௞೙

మା௔భ೙ା⋯ା௔೙೙வ଴

  (16) 

 
To summarize, it can be observed that the stability of the 

control system built in the catastrophe class "hyperbolic 
umbilic" is in an infinitely wide range of changes in the 
uncertain parameters of the control object. The existence and 
stability of the stationary state (4) is possible when the uncertain 
parameters of the control object in the region (11) change. In 
the case of loss of stability of this stationary state, other 
stationary states are generated (5) and their existence 
simultaneously is impossible. The last stationary states (5) will 
be stable when the system of inequalities (16) is satisfied. 

Carried out studies show that a self-organizing control 
system with m inputs and n outputs is a periodically stable at 
any changes in the undetermined parameter of the system. 

IV. CONCLUSION 

Real dynamic control objects are mostly non-linear or 
linearized, and control systems are constructed and operated 
under uncertainty. The ability of a control system to maintain 
stability under uncertainty is understood as robust stability. 
When going beyond the confines of the robust stability domain 
of uncertain parameters, instability and a deterministic chaotic 
regime with the generation of a “strange attractor” are generated 
in the system. A practically important class of problems arises 
when an unstable and deterministic chaotic process must be 
controlled, completely suppressing instabilities and the degree 
of chaotic state. Therefore, a self-organizing control system in 
the class of catastrophes "hyperbolic umbilic" is the main 
protection against the mode of deterministic chaos and 
instability. 

Control systems in the class of catastrophes "hyperbolic 
umbilic" have several stable stationary states. These stationary 
states do not exist at the same time and are not stable at the same 
time. If the undetermined parameters change, then the system 
passes from one stable stationary state to another due to 
"bifurcations". In this case, the initial stationary state loses its 
robust stability, and the other stationary state takes on the 
properties of robust stability. Consequently, self-organization 
occurs in the system and unstable and deterministic chaotic 
modes are excluded from the scenarios of process development 
in the system. 

Consideration of a self-organizing control system in the 
hyperbolic umbilic catastrophe class as gradient dynamical 
systems, and Lyapunov functions as potential functions from 
catastrophe theory, made it possible to propose a universal 
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approach to constructing the Lyapunov vector function. The 
application of the Morse lemma to the Lyapunov vector 
function allows us to represent the conditions for aperiodic 
robust stability of the system in the form of a system of 
algebraic inequalities regarding the undetermined and settable 
parameters of the controller.  
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