A Direct Probabilistic Optimization Method for Constrained Optimal Control Problem
Authors: Akbar Banitalebi, Mohd Ismail Abd Aziz, Rohanin Ahmad
Abstract:
A new stochastic algorithm called Probabilistic Global Search Johor (PGSJ) has recently been established for global optimization of nonconvex real valued problems on finite dimensional Euclidean space. In this paper we present convergence guarantee for this algorithm in probabilistic sense without imposing any more condition. Then, we jointly utilize this algorithm along with control parameterization technique for the solution of constrained optimal control problem. The numerical simulations are also included to illustrate the efficiency and effectiveness of the PGSJ algorithm in the solution of control problems.
Keywords: Optimal Control Problem, Constraints, Direct Methods, Stochastic Algorithm
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087844
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695References:
[1] A., Banitalebi, B. A. A., Mohd-Ismail, A., Rohanin, A probabilistic
algorithm for optimal control problem, International Journal of Computer
Applications, 46 (2012), 48-55.
[2] R. Bellman, Introduction to mathematical theory of control processes,
vol. 2, Academic Press, New York, (1971).
[3] J. T., Betts, S. L., Campbell, Practical Methods for Optimal Control and
Estimation Using Nonlinear Programming, 2nd ed., Advances in Design
and Control 19, SIAM, Philadelphia, (2010).
[4] L., Biegler, Solution of dynamic optimization problems by successive
quadratic programming and orthogonal collocation, Comput. Chem. Eng.,
8 (1984), 243-248.
[5] L. T, Biegler, An overview of simultaneous strategies for dynamic
optimization, Chem. Eng. Process., 46 (2007), 1043-1053.
[6] E., Bryson, Y. C., Ho, Applied Optimal Control: Optimization, Estimation
and Control, Taylor & Francis, New York, (1975).
[7] R. T., Farouki, V. T., Rajan, Algorithms for polynomials in Bernstein
form, Comput. Aided. Geom. D., 5 (l988), l-26.
[8] A., Ghosh, S., Das, A., Chowdhury, R., Giri, An ecologically inspired
direct search method for solving optimal control problems with Bezier
parameterization, Eng. Appl. Artif. Intel., 24 (2011), 1195-1203.
[9] C. J., Goh, K. L., Teo, Control parametrization: A unified approach to
optimal control problems with general constraints, Automatica, 24 (1988),
3-18.
[10] M. Hafayed, S. Abbas, Filippov approach in necessary conditions of
optimality for singular control problem, Int. J. Pure Appl. Math, 77
(2012), 667-680.
[11] R. F., Hartl, S. P., Sethi, R. G., Vickson, A Survey of the Maximum
Principles for Optimal Control Problems with State Constraints, SIAM
Review, 37 (1995), no. 2, 181-218.
[12] R. C., Loxton, K. L., Teo, V., Rehbock, K. F. C., Yiu, Optimal control
problems with a continuous inequality constraint on the state and the
control, Automatica, 45 (2009), 2250-2257.
[13] H., Modares, M. B. N., Solving nonlinear optimal control problems
using a hybrid IPSO-SQP algorithm, Eng. Appl. Artif. Intel., 24 (2011),
476-484.
[14] L. S., Pontryagin, V. G., Boltyanskii, R. V., Gamkrelidze, E. F., Mischenko,
The mathematical theory of optimal processes (Translation by L.
W., Neustadt), Macmillan, New York, (1962).
[15] R. G., Regis, Convergence guarantees for generalized adaptive stochastic
search methods for continuous global optimization, Eur. J. Oper. Res., 207
(2010), 1187-1202.
[16] I., Sadek, T., Abualrub, M., Abukhaled, A computational method for
solving optimal control of a system of parallel beams using Legendre
wavelets, Math. Comput. Model., 45 (2007), 1253-1264.
[17] M., Schlegel, K., Stockmann, T., Binder, W., Marquardt, Dynamic
optimization using adaptive control vector parameterization, Comput.
Chem. Eng., 29 (2005), 1731-1751.
[18] K. L., Teo, C. J., Goh, K. H., Wong, A unified computational approach
to optimal control problems, Scientific & Technical, London, (1991).
[19] R., Vinter, Optimal Control, Birkhauser, Boston, (2010).
[20] J., Vlassenbroeck, A Chebyshev Polynomial Method for Optimal Control
with State Constraints, Automatica, 24 (1988), 499-506.