Search results for: mobile game based learning
10230 Perceptual JPEG Compliant Coding by Using DCT-Based Visibility Thresholds of Color Images
Authors: Kuo-Cheng Liu
Abstract:
Effective estimation of just noticeable distortion (JND) for images is helpful to increase the efficiency of a compression algorithm in which both the statistical redundancy and the perceptual redundancy should be accurately removed. In this paper, we design a DCT-based model for estimating JND profiles of color images. Based on a mathematical model of measuring the base detection threshold for each DCT coefficient in the color component of color images, the luminance masking adjustment, the contrast masking adjustment, and the cross masking adjustment are utilized for luminance component, and the variance-based masking adjustment based on the coefficient variation in the block is proposed for chrominance components. In order to verify the proposed model, the JND estimator is incorporated into the conventional JPEG coder to improve the compression performance. A subjective and fair viewing test is designed to evaluate the visual quality of the coding image under the specified viewing condition. The simulation results show that the JPEG coder integrated with the proposed DCT-based JND model gives better coding bit rates at visually lossless quality for a variety of color images.
Keywords: Just-noticeable distortion (JND), discrete cosine transform (DCT), JPEG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 258310229 Through Biometric Card in Romania: Person Identification by Face, Fingerprint and Voice Recognition
Authors: Hariton N. Costin, Iulian Ciocoiu, Tudor Barbu, Cristian Rotariu
Abstract:
In this paper three different approaches for person verification and identification, i.e. by means of fingerprints, face and voice recognition, are studied. Face recognition uses parts-based representation methods and a manifold learning approach. The assessment criterion is recognition accuracy. The techniques under investigation are: a) Local Non-negative Matrix Factorization (LNMF); b) Independent Components Analysis (ICA); c) NMF with sparse constraints (NMFsc); d) Locality Preserving Projections (Laplacianfaces). Fingerprint detection was approached by classical minutiae (small graphical patterns) matching through image segmentation by using a structural approach and a neural network as decision block. As to voice / speaker recognition, melodic cepstral and delta delta mel cepstral analysis were used as main methods, in order to construct a supervised speaker-dependent voice recognition system. The final decision (e.g. “accept-reject" for a verification task) is taken by using a majority voting technique applied to the three biometrics. The preliminary results, obtained for medium databases of fingerprints, faces and voice recordings, indicate the feasibility of our study and an overall recognition precision (about 92%) permitting the utilization of our system for a future complex biometric card.Keywords: Biometry, image processing, pattern recognition, speech analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195110228 An Analysis of Activity-Based Costing in a Manufacturing System
Authors: Derya Eren Akyol, Gonca Tuncel, G. Mirac Bayhan
Abstract:
Activity-Based Costing (ABC) represents an alternative paradigm to traditional cost accounting system and it often provides more accurate cost information for decision making such as product pricing, product mix, and make-orbuy decisions. ABC models the causal relationships between products and the resources used in their production and traces the cost of products according to the activities through the use of appropriate cost drivers. In this paper, the implementation of the ABC in a manufacturing system is analyzed and a comparison with the traditional cost based system in terms of the effects on the product costs are carried out to highlight the difference between two costing methodologies. By using this methodology, a valuable insight into the factors that cause the cost is provided, helping to better manage the activities of the company.Keywords: Activity-based costing, manufacturing systems, product costs, traditional costing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 316010227 Study of Hydrothermal Behavior of Thermal Insulating Materials Based On Natural Fibers
Authors: J. Zach, J. Hroudova, J. Brozovsky
Abstract:
Thermal insulation materials based on natural fibers represent a very promising area of materials based on natural easy renewable row sources. These materials may be in terms of the properties of most competing synthetic insulations, but show somewhat higher moisture sensitivity and thermal insulation properties are strongly influenced by the density and orientation of fibers. The paper described the problem of hygrothermal behavior of thermal insulation materials based on natural plant and animal fibers. This is especially the dependence of the thermal properties of these materials on the type of fiber, bulk density, temperature, moisture and the fiber orientation.
Keywords: Thermal insulating materials, hemp fibers, sheep wool fibers, thermal conductivity, moisture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 256210226 Characterization of Penicillin V Acid and Its Related Compounds by HPLC
Authors: Bahdja Guerfi, N. Hadhoum, I. Azouz, M. Bendoumia, S. Bouafia, F. Z. Hadjadj Aoul
Abstract:
Background: 'Penicillin V' is a narrow, bactericidal antibiotic of the beta-lactam family of the naturally occurring penicillin group. It is limited to infections due to the germs defined as sensitive. The objective of this work was to identify and to characterize Penicillin V acid and its related compounds by High-performance liquid chromatography (HPLC). Methods: Firstly phenoxymethylpenicillin was identified by an infrared absorption. The organoleptic characteristics, pH, and determination of water content were also studied. The dosage of Penicillin V acid active substance and the determination of its related compounds were carried on waters HPLC, equipped with a UV detector at 254 nm and Discovery HS C18 column (250 mm X 4.6 mm X 5 µm) which is maintained at room temperature. The flow rate was about 1 ml per min. A mixture of water, acetonitrile and acetic acid (65:35:01) was used as mobile phase for phenoxyacetic acid ‘impurity B' and a mixture of water, acetonitrile and acetic acid (650:150:5.75) for the assay and 4-hydroxypenicillin V 'impurity D'. Results: The identification of Penicillin V acid active substance and the evaluation of its chemical quality showed conformity with USP 35th edition. The Penicillin V acid content in the raw material is equal to 1692.22 UI/mg. The percentage content of phenoxyacetic acid and 4-hydroxypenicillin V was respectively: 0.035% and 0.323%. Conclusion: Through these results, we can conclude that the Penicillin V acid active substance tested is of good physicochemical quality.
Keywords: Penicillin V acid, characterization, related substances, HPLC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 104710225 A New Dimension of Business Intelligence: Location-based Intelligence
Authors: Zeljko Panian
Abstract:
Through the course of this paper we define Locationbased Intelligence (LBI) which is outgrowing from process of amalgamation of geolocation and Business Intelligence. Amalgamating geolocation with traditional Business Intelligence (BI) results in a new dimension of BI named Location-based Intelligence. LBI is defined as leveraging unified location information for business intelligence. Collectively, enterprises can transform location data into business intelligence applications that will benefit all aspects of the enterprise. Expectations from this new dimension of business intelligence are great and its future is obviously bright.Keywords: Business intelligence, geolocation, location-based intelligence, innovation, location-intelligent business
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220610224 Education and Assessment of Civil Employees in e-Government: The Case of a Moodle Based Platform
Authors: Stamatios A. Theocharis, George A. Tsihrintzis
Abstract:
One of the most important factors for the success of e-government is training and preparing the workforce of the public sector. As changes and innovation in the public sector progress at a very slow pace and more slowly than in the private sector, issues related to human resources require special care. This is because the workforce will eventually seize the opportunities of the technological solutions used in e-Government. Thus, the central administration should provide employees with continuous and focused training not only on new technologies but also on a wide range of subjects and also improve interdepartmental interaction.
To achieve all this, new methods and training tools need to be implemented in addition to assessment of the employees. In this spirit, we propose the development of an educational platform with user personalization features. We propose the development of this platform using Moodle as the basic tool. Incorporating a personalization mechanism is very important since different employees have different backgrounds, education levels, computer skills, or different capability to develop further. Key features of the proposed platform include, besides typical e-learning tools, communities organized in order to exchange experiences and knowledge, groups of users based on certain criteria, automatic evaluation of users and potential self-education and self-assessment. In its fully developed form, this platform can be part of a more comprehensive knowledge management system for the public sector.
Keywords: e-Government, civil employees education, education technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 194310223 A Novel Probablistic Strategy for Modeling Photovoltaic Based Distributed Generators
Authors: Engy A. Mohamed, Yasser G. Hegazy
Abstract:
This paper presents a novel algorithm for modeling photovoltaic based distributed generators for the purpose of optimal planning of distribution networks. The proposed algorithm utilizes sequential Monte Carlo method in order to accurately consider the stochastic nature of photovoltaic based distributed generators. The proposed algorithm is implemented in MATLAB environment and the results obtained are presented and discussed.Keywords: Comulative distribution function, distributed generation, Monte Carlo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 248710222 The Role of Product Involvement Level in Consumer Tendency toward Online Review
Authors: Khashayar Jafari Kaliji
Abstract:
The paper aims to clarify the relationship between product involvement level and consumer tendency toward online review. It proposes the products in two classes and examines the level of user attention and significant difference between attribute-based areas and experience-based areas in each category. It uses an eye-tracking experiment to simulate the experience of online shopping behavior in order to view the consumers' shopping behavior. Thus, a scenario was designed, and 23 participants were asked step by step to purchase some products and add them to their shopping cart. The fixation durations are used to examine the amount of visual attention of the user in each area of interest (AOI) determined considering two classes of high involvement and low involvement products, and paired sample T-test was used to examine the effect of the product’s types on the online review content. The study results explained that users of high involvement products consider the attribute-based points more highly than the experience-based points.
Keywords: High-involvement products, low-involvement products, attribute-based review, experience-based review, eye tracking, fixation duration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42110221 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference
Authors: Hussein Alahmer, Amr Ahmed
Abstract:
Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate. This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.
Keywords: CAD system, difference of feature, Fuzzy c means, Liver segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142210220 Gaussian Density and HOG with Content Based Image Retrieval System – A New Approach
Authors: N. Shanmugapriya, R. Nallusamy
Abstract:
Content-based image retrieval (CBIR) uses the contents of images to characterize and contact the images. This paper focus on retrieving the image by separating images into its three color mechanism R, G and B and for that Discrete Wavelet Transformation is applied. Then Wavelet based Generalized Gaussian Density (GGD) is practical which is used for modeling the coefficients from the wavelet transforms. After that it is agreed to Histogram of Oriented Gradient (HOG) for extracting its characteristic vectors with Relevant Feedback technique is used. The performance of this approach is calculated by exactness and it confirms that this method is wellorganized for image retrieval.
Keywords: Content-Based Image Retrieval (CBIR), Relevant Feedback, Histogram of Oriented Gradient (HOG), Generalized Gaussian Density (GGD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204410219 An Artificial Neural Network Based Model for Predicting H2 Production Rates in a Sucrose-Based Bioreactor System
Authors: Nikhil, Bestamin Özkaya, Ari Visa, Chiu-Yue Lin, Jaakko A. Puhakka, Olli Yli-Harja
Abstract:
The performance of a sucrose-based H2 production in a completely stirred tank reactor (CSTR) was modeled by neural network back-propagation (BP) algorithm. The H2 production was monitored over a period of 450 days at 35±1 ºC. The proposed model predicts H2 production rates based on hydraulic retention time (HRT), recycle ratio, sucrose concentration and degradation, biomass concentrations, pH, alkalinity, oxidation-reduction potential (ORP), acids and alcohols concentrations. Artificial neural networks (ANNs) have an ability to capture non-linear information very efficiently. In this study, a predictive controller was proposed for management and operation of large scale H2-fermenting systems. The relevant control strategies can be activated by this method. BP based ANNs modeling results was very successful and an excellent match was obtained between the measured and the predicted rates. The efficient H2 production and system control can be provided by predictive control method combined with the robust BP based ANN modeling tool.Keywords: Back-propagation, biohydrogen, bioprocessmodeling, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177910218 Development of a Neural Network based Algorithm for Multi-Scale Roughness Parameters and Soil Moisture Retrieval
Authors: L. Bennaceur Farah, I. R. Farah, R. Bennaceur, Z. Belhadj, M. R. Boussema
Abstract:
The overall objective of this paper is to retrieve soil surfaces parameters namely, roughness and soil moisture related to the dielectric constant by inverting the radar backscattered signal from natural soil surfaces. Because the classical description of roughness using statistical parameters like the correlation length doesn't lead to satisfactory results to predict radar backscattering, we used a multi-scale roughness description using the wavelet transform and the Mallat algorithm. In this description, the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each having a spatial scale. A second step in this study consisted in adapting a direct model simulating radar backscattering namely the small perturbation model to this multi-scale surface description. We investigated the impact of this description on radar backscattering through a sensitivity analysis of backscattering coefficient to the multi-scale roughness parameters. To perform the inversion of the small perturbation multi-scale scattering model (MLS SPM) we used a multi-layer neural network architecture trained by backpropagation learning rule. The inversion leads to satisfactory results with a relative uncertainty of 8%.Keywords: Remote sensing, rough surfaces, inverse problems, SAR, radar scattering, Neural networks and Fractals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159810217 An Experiment for Assessment of a “Functional Scenario-based“ Test Case Generation Method
Authors: Cencen Li, Shaoying Liu, Shin Nakajima
Abstract:
Specification-based testing enables us to detect errors in the implementation of functions defined in given specifications. Its effectiveness in achieving high path coverage and efficiency in generating test cases are always major concerns of testers. The automatic test cases generation approach based on formal specifications proposed by Liu and Nakajima is aimed at ensuring high effectiveness and efficiency, but this approach has not been empirically assessed. In this paper, we present an experiment for assessing Liu-s testing approach. The result indicates that this testing approach may not be effective in some circumstances. We discuss the result, analyse the specific causes for the ineffectiveness, and describe some suggestions for improvement.Keywords: experiment, functional scenario, specification-based, testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170610216 Thermal Stability of a Vertical SOI-Based Capacitorless One-Transistor DRAM with Trench-Body Structure
Authors: Po-Hsieh Lin, Jyi-Tsong Lin
Abstract:
A vertical SOI-based MOSFET with trench body structure operated as 1T DRAM cell at various temperatures has been studied and investigated. Different operation temperatures are assigned for the device for its performance comparison, thus the thermal stability is carefully evaluated for the future memory device applications. Based on the simulation, the vertical SOI-based MOSFET with trench body structure demonstrates the electrical characteristics properly and possess conspicuous kink effect at various operation temperatures. Transient characteristics were also performed to prove that its programming window values and retention time behaviors are acceptable when the new 1T DRAM cell is operated at high operation temperature.Keywords: SOI, 1T DRAM, thermal stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157810215 In Search of a Suitable Neural Network Capable of Fast Monitoring of Congestion Level in Electric Power Systems
Authors: Pradyumna Kumar Sahoo, Prasanta Kumar Satpathy
Abstract:
This paper aims at finding a suitable neural network for monitoring congestion level in electrical power systems. In this paper, the input data has been framed properly to meet the target objective through supervised learning mechanism by defining normal and abnormal operating conditions for the system under study. The congestion level, expressed as line congestion index (LCI), is evaluated for each operating condition and is presented to the NN along with the bus voltages to represent the input and target data. Once, the training goes successful, the NN learns how to deal with a set of newly presented data through validation and testing mechanism. The crux of the results presented in this paper rests on performance comparison of a multi-layered feed forward neural network with eleven types of back propagation techniques so as to evolve the best training criteria. The proposed methodology has been tested on the standard IEEE-14 bus test system with the support of MATLAB based NN toolbox. The results presented in this paper signify that the Levenberg-Marquardt backpropagation algorithm gives best training performance of all the eleven cases considered in this paper, thus validating the proposed methodology.
Keywords: Line congestion index, critical bus, contingency, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179210214 The Importance of Raising Awareness of Collocational Knowledge in ESL/EFL Classrooms
Authors: Mohammad ALAmro
Abstract:
The most crucial aspect that is closely related to vocabulary and the one that needs to be emphasized and investigated more than it has been up until now, is the ability to combine words that co-occur frequently in the language. Pedagogically, collocation is one of the error-provoking aspects in foreign language learning. This is indicative of the dire need to provide L2 learners with tools to help them improve their collocational knowledge. This paper pinpoints the role that collocations play in the English language. Furthermore, it presents pedagogical implications for ESL/EFL learners.
Keywords: Collocation, pedagogy, vocabulary knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 221310213 Product Feature Modelling for Integrating Product Design and Assembly Process Planning
Authors: Baha Hasan, Jan Wikander
Abstract:
This paper describes a part of the integrating work between assembly design and assembly process planning domains (APP). The work is based, in its first stage, on modelling assembly features to support APP. A multi-layer architecture, based on feature-based modelling, is proposed to establish a dynamic and adaptable link between product design using CAD tools and APP. The proposed approach is based on deriving “specific function” features from the “generic” assembly and form features extracted from the CAD tools. A hierarchal structure from “generic” to “specific” and from “high level geometrical entities” to “low level geometrical entities” is proposed in order to integrate geometrical and assembly data extracted from geometrical and assembly modelers to the required processes and resources in APP. The feature concept, feature-based modelling, and feature recognition techniques are reviewed.Keywords: Assembly feature, assembly process planning, feature, feature-based modelling, form feature, ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 118510212 An Overview of the Risk for HIV/AIDS among Young Women in South Africa: Gender Based Violence
Authors: Shaneil Taylor
Abstract:
Gender-based violence is a reflection of the inequalities that are associated within a society between the men and women that affects the health, dignity, security and autonomy of its victims. There are various determinants that contribute to the health risk of young women who have experienced sexual violence, in countries that have a high prevalence rate for HIV. For instance, in South Africa, where the highest prevalence rate for HIV is among young women, their susceptibility to the virus has been increased by sexual violence and cultural inequalities. Therefore, this study is a review of literature that explores how gender-based violence increases the possibility for HIV/AIDS among young women in South Africa.
Keywords: Gender based violence, HIV/AIDS transmission, young women, Risky sexual behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 180210211 Ziegler Nichols Based Integral Proportional Controller for Superheated Steam Temperature Control System
Authors: Amil Daraz, Suheel Abdullah Malik, Tahir Saleem, Sajid Ali Bhati
Abstract:
In this paper, Integral Proportional (I-P) controller is employed for superheated steam temperature control system. The Ziegler-Nichols (Z-N) method is used for the tuning of I-P controller. The performance analysis of Z-N based I-P controller is assessed on superheated steam system of 500-MW boiler. The comparison of transient response parameters such as rise time, settling time, and overshoot is made with Z-N based Proportional Integral (PI) controller. It is observed from the results that Z-N based I-P controller completely eliminates the overshoot in the output response.Keywords: Superheated steam, process reaction curve, PI and I-P controller, Ziegler-Nichols tuning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142710210 Design and Implementation of a Memory Safety Isolation Method Based on the Xen Cloud Environment
Authors: Dengpan Wu, Dan Liu
Abstract:
In view of the present cloud security problem has increasingly become one of the major obstacles hindering the development of the cloud computing, put forward a kind of memory based on Xen cloud environment security isolation technology implementation. And based on Xen virtual machine monitor system, analysis of the model of memory virtualization is implemented, using Xen memory virtualization system mechanism of super calls and grant table, based on the virtual machine manager internal implementation of access control module (ACM) to design the security isolation system memory. Experiments show that, the system can effectively isolate different customer domain OS between illegal access to memory data.
Keywords: Cloud security, memory isolation, Xen, virtual machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 133610209 Topics of Blockchain Technology to Teach at Community College
Authors: Penn P. Wu, Jeannie Jo
Abstract:
Blockchain technology has rapidly gained popularity in industry. This paper attempts to assist academia to answer four questions. First, should community colleges begin offering education to nurture blockchain-literate students for the job market? Second, what are the appropriate topical areas to cover? Third, should it be an individual course? And forth, should it be a technical or management course? This paper starts with identifying the knowledge domains of blockchain technology and the topical areas each domain has, and continues with placing them in appropriate academic territories (Computer Sciences vs. Business) and subjects (programming, management, marketing, and laws), and then develops an evaluation model to determine the appropriate topical area for community colleges to teach. The evaluation is based on seven factors: maturity of technology, impacts on management, real-world applications, subject classification, knowledge prerequisites, textbook readiness, and recommended pedagogies. The evaluation results point to an interesting direction that offering an introductory course is an ideal option to guide students through the learning journey of what blockchain is and how it applies to business. Such an introductory course does not need to engage students in the discussions of mathematics and sciences that make blockchain technologies possible. While it is inevitable to brief technical topics to help students build a solid knowledge foundation of blockchain technologies, community colleges should avoid offering students a course centered on the discussion of developing blockchain applications.
Keywords: Blockchain, pedagogies, blockchain technologies, blockchain course, blockchain pedagogies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 93710208 Fuzzy Wavelet Packet based Feature Extraction Method for Multifunction Myoelectric Control
Authors: Rami N. Khushaba, Adel Al-Jumaily
Abstract:
The myoelectric signal (MES) is one of the Biosignals utilized in helping humans to control equipments. Recent approaches in MES classification to control prosthetic devices employing pattern recognition techniques revealed two problems, first, the classification performance of the system starts degrading when the number of motion classes to be classified increases, second, in order to solve the first problem, additional complicated methods were utilized which increase the computational cost of a multifunction myoelectric control system. In an effort to solve these problems and to achieve a feasible design for real time implementation with high overall accuracy, this paper presents a new method for feature extraction in MES recognition systems. The method works by extracting features using Wavelet Packet Transform (WPT) applied on the MES from multiple channels, and then employs Fuzzy c-means (FCM) algorithm to generate a measure that judges on features suitability for classification. Finally, Principle Component Analysis (PCA) is utilized to reduce the size of the data before computing the classification accuracy with a multilayer perceptron neural network. The proposed system produces powerful classification results (99% accuracy) by using only a small portion of the original feature set.Keywords: Biomedical Signal Processing, Data mining andInformation Extraction, Machine Learning, Rehabilitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174110207 VFAST TCP: A delay-based enhanced version of FAST TCP
Authors: Salem Belhaj, Moncef Tagina
Abstract:
This paper is aimed at describing a delay-based endto- end (e2e) congestion control algorithm, called Very FAST TCP (VFAST), which is an enhanced version of FAST TCP. The main idea behind this enhancement is to smoothly estimate the Round-Trip Time (RTT) based on a nonlinear filter, which eliminates throughput and queue oscillation when RTT fluctuates. In this context, an evaluation of the suggested scheme through simulation is introduced, by comparing our VFAST prototype with FAST in terms of throughput, queue behavior, fairness, stability, RTT and adaptivity to changes in network. The achieved simulation results indicate that the suggested protocol offer better performance than FAST TCP in terms of RTT estimation and throughput.Keywords: Fast tcp, RTT, delay estimation, delay-based congestion control, high speed TCP, large bandwidth delay product.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173910206 Design Based Performance Prediction of Component Based Software Products
Authors: K. S. Jasmine, R. Vasantha
Abstract:
Component-Based software engineering provides an opportunity for better quality and increased productivity in software development by using reusable software components [10]. One of the most critical aspects of the quality of a software system is its performance. The systematic application of software performance engineering techniques throughout the development process can help to identify design alternatives that preserve desirable qualities such as extensibility and reusability while meeting performance objectives [1]. In the present scenario, software engineering methodologies strongly focus on the functionality of the system, while applying a “fix- it-later" approach to software performance aspects [3]. As a result, lengthy fine-tunings, expensive extra hard ware, or even redesigns are necessary for the system to meet the performance requirements. In this paper, we propose design based, implementation independent, performance prediction approach to reduce the overhead associated in the later phases while developing a performance guaranteed software product with the help of Unified Modeling Language (UML).Keywords: Software Reuse, Component-based development, Unified Modeling Language, Software performance, Software components, Performance engineering, Software engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186910205 Low Resolution Single Neural Network Based Face Recognition
Authors: Jahan Zeb, Muhammad Younus Javed, Usman Qayyum
Abstract:
This research paper deals with the implementation of face recognition using neural network (recognition classifier) on low-resolution images. The proposed system contains two parts, preprocessing and face classification. The preprocessing part converts original images into blurry image using average filter and equalizes the histogram of those image (lighting normalization). The bi-cubic interpolation function is applied onto equalized image to get resized image. The resized image is actually low-resolution image providing faster processing for training and testing. The preprocessed image becomes the input to neural network classifier, which uses back-propagation algorithm to recognize the familiar faces. The crux of proposed algorithm is its beauty to use single neural network as classifier, which produces straightforward approach towards face recognition. The single neural network consists of three layers with Log sigmoid, Hyperbolic tangent sigmoid and Linear transfer function respectively. The training function, which is incorporated in our work, is Gradient descent with momentum (adaptive learning rate) back propagation. The proposed algorithm was trained on ORL (Olivetti Research Laboratory) database with 5 training images. The empirical results provide the accuracy of 94.50%, 93.00% and 90.25% for 20, 30 and 40 subjects respectively, with time delay of 0.0934 sec per image.Keywords: Average filtering, Bicubic Interpolation, Neurons, vectorization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175510204 Graph Cuts Segmentation Approach Using a Patch-Based Similarity Measure Applied for Interactive CT Lung Image Segmentation
Authors: Aicha Majda, Abdelhamid El Hassani
Abstract:
Lung CT image segmentation is a prerequisite in lung CT image analysis. Most of the conventional methods need a post-processing to deal with the abnormal lung CT scans such as lung nodules or other lesions. The simplest similarity measure in the standard Graph Cuts Algorithm consists of directly comparing the pixel values of the two neighboring regions, which is not accurate because this kind of metrics is extremely sensitive to minor transformations such as noise or other artifacts problems. In this work, we propose an improved version of the standard graph cuts algorithm based on the Patch-Based similarity metric. The boundary penalty term in the graph cut algorithm is defined Based on Patch-Based similarity measurement instead of the simple intensity measurement in the standard method. The weights between each pixel and its neighboring pixels are Based on the obtained new term. The graph is then created using theses weights between its nodes. Finally, the segmentation is completed with the minimum cut/Max-Flow algorithm. Experimental results show that the proposed method is very accurate and efficient, and can directly provide explicit lung regions without any post-processing operations compared to the standard method.Keywords: Graph cuts, lung CT scan, lung parenchyma segmentation, patch based similarity metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75010203 Design of Open Framework Based Smart ESS Profile for PV-ESS and UPS-ESS
Authors: Young-Su Ryu, Won-Gi Jeon, Byoung-Chul Song, Jae-Hong Park, Ki-Won Kwon
Abstract:
In this paper, an open framework based smart energy storage system (ESS) profile for photovoltaic (PV)-ESS and uninterruptible power supply (UPS)-ESS is proposed and designed. An open framework based smart ESS is designed and developed for unifying the different interfaces among manufacturers. The smart ESS operates under the profile which provides the specifications of peripheral devices such as different interfaces and to the open framework. The profile requires well systemicity and expandability for addible peripheral devices. Especially, the smart ESS should provide the expansion with existing systems such as UPS and the linkage with new renewable energy technology such as PV. This paper proposes and designs an open framework based smart ESS profile for PV-ESS and UPS-ESS. The designed profile provides the existing smart ESS and also the expandability of additional peripheral devices on smart ESS such as PV and UPS.Keywords: ESS, open framework, profile, PV, UPS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 113410202 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients Cohorts: A Case Study in Scotland
Authors: Sotirios Raptis
Abstract:
Health and Social care (HSc) services planning and scheduling are facing unprecedented challenges, due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven approaches can help to improve policies, plan and design services provision schedules using algorithms that assist healthcare managers to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as Classification and Regression Trees (CART), Random Forests (RF), and Logistic Regression (LGR). The significance tests Chi-Squared and Student’s test are used on data over a 39 years span for which data exist for services delivered in Scotland. The demands are associated using probabilities and are parts of statistical hypotheses. These hypotheses, as their NULL part, assume that the target demand is statistically dependent on other services’ demands. This linking is checked using the data. In addition, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus, groups of services. Statistical tests confirmed ML coupling and made the prediction statistically meaningful and proved that a target service can be matched reliably to other services while ML showed that such marked relationships can also be linear ones. Zero padding was used for missing years records and illustrated better such relationships both for limited years and for the entire span offering long-term data visualizations while limited years periods explained how well patients numbers can be related in short periods of time or that they can change over time as opposed to behaviours across more years. The prediction performance of the associations were measured using metrics such as Receiver Operating Characteristic (ROC), Area Under Curve (AUC) and Accuracy (ACC) as well as the statistical tests Chi-Squared and Student. Co-plots and comparison tables for the RF, CART, and LGR methods as well as the p-value from tests and Information Exchange (IE/MIE) measures are provided showing the relative performance of ML methods and of the statistical tests as well as the behaviour using different learning ratios. The impact of k-neighbours classification (k-NN), Cross-Correlation (CC) and C-Means (CM) first groupings was also studied over limited years and for the entire span. It was found that CART was generally behind RF and LGR but in some interesting cases, LGR reached an AUC = 0 falling below CART, while the ACC was as high as 0.912 showing that ML methods can be confused by zero-padding or by data’s irregularities or by the outliers. On average, 3 linear predictors were sufficient, LGR was found competing well RF and CART followed with the same performance at higher learning ratios. Services were packed only when a significance level (p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, low birth weights, alcoholism, drug abuse, and emergency admissions. The work found that different HSc services can be well packed as plans of limited duration, across various services sectors, learning configurations, as confirmed by using statistical hypotheses.
Keywords: Class, cohorts, data frames, grouping, prediction, probabilities, services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46510201 An Semantic Algorithm for Text Categoritation
Authors: Xu Zhao
Abstract:
Text categorization techniques are widely used to many Information Retrieval (IR) applications. In this paper, we proposed a simple but efficient method that can automatically find the relationship between any pair of terms and documents, also an indexing matrix is established for text categorization. We call this method Indexing Matrix Categorization Machine (IMCM). Several experiments are conducted to show the efficiency and robust of our algorithm.
Keywords: Text categorization, Sub-space learning, Latent Semantic Space
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472