Search results for: Shaoying Liu
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: Shaoying Liu

2 An Experiment for Assessment of a “Functional Scenario-based“ Test Case Generation Method

Authors: Cencen Li, Shaoying Liu, Shin Nakajima

Abstract:

Specification-based testing enables us to detect errors in the implementation of functions defined in given specifications. Its effectiveness in achieving high path coverage and efficiency in generating test cases are always major concerns of testers. The automatic test cases generation approach based on formal specifications proposed by Liu and Nakajima is aimed at ensuring high effectiveness and efficiency, but this approach has not been empirically assessed. In this paper, we present an experiment for assessing Liu-s testing approach. The result indicates that this testing approach may not be effective in some circumstances. We discuss the result, analyse the specific causes for the ineffectiveness, and describe some suggestions for improvement.

Keywords: experiment, functional scenario, specification-based, testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
1 Specific Emitter Identification Based on Refined Composite Multiscale Dispersion Entropy

Authors: Shaoying Guo, Yanyun Xu, Meng Zhang, Weiqing Huang

Abstract:

The wireless communication network is developing rapidly, thus the wireless security becomes more and more important. Specific emitter identification (SEI) is an vital part of wireless communication security as a technique to identify the unique transmitters. In this paper, a SEI method based on multiscale dispersion entropy (MDE) and refined composite multiscale dispersion entropy (RCMDE) is proposed. The algorithms of MDE and RCMDE are used to extract features for identification of five wireless devices and cross-validation support vector machine (CV-SVM) is used as the classifier. The experimental results show that the total identification accuracy is 99.3%, even at low signal-to-noise ratio(SNR) of 5dB, which proves that MDE and RCMDE can describe the communication signal series well. In addition, compared with other methods, the proposed method is effective and provides better accuracy and stability for SEI.

Keywords: Cross-validation support vector machine, refined composite multiscale dispersion entropy, specific emitter identification, transient signal, wireless communication device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814