An Semantic Algorithm for Text Categoritation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
An Semantic Algorithm for Text Categoritation

Authors: Xu Zhao

Abstract:

Text categorization techniques are widely used to many Information Retrieval (IR) applications. In this paper, we proposed a simple but efficient method that can automatically find the relationship between any pair of terms and documents, also an indexing matrix is established for text categorization. We call this method Indexing Matrix Categorization Machine (IMCM). Several experiments are conducted to show the efficiency and robust of our algorithm.

Keywords: Text categorization, Sub-space learning, Latent Semantic Space

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1055429

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470

References:


[1] Cristianini, N., Lodhi, H., Shawe-Taylor, J.: Latent Semantic Kernels for Feature Selection. NeuroCOLT Working Group (2000), http://www.neurocolt.org
[2] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R.(1990). Indexing By Latent Semantic Analysis. Journal of the American Society For Information Science, 41, 391-407.
[3] Landauer, T. K., Foltz, P. W., & Laham, D. (this issue). An introduction to Latent Semantic Analysis. Discourse Processes .
[4] Foltz, P. W. (1996). Latent Semantic Analysis for text-based research. Behavior Research Methods, Instruments and Computers, 28(2), 197-202.
[5] Letsche, T.A. & Berry, M.W. (1997). Large-scale information retrieval with Latent Semantic Indexing. Information Sciences - Applications, 100, 105-137.
[6] Landauer, T. K. & Dumais, S. T. (1997). A solution to Plato's problem: The Latent Semantic Analysis heory of acquisition, induction and representation of knowledge. Psychological Review, 104, 211-240.
[7] Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University, Press, Cambridge (2004)
[8] Dumais, S.T.: Improving the Retrieval of Information from External Sources. Behav. Res. Meth. Instr. Comput. 23, 229-236 (1991)
[9] Debole, F., Sebastiani, F.: Supervised Term Weighting for Automated T ext Categorization. In: SAC 2003, pp. 784-788. ACM Press, New York (2004)
[10] Berry, M.W., Dumais, S.T., O-Brien, G.W.: Using Linear Algebra for Intelligent Information Eetrieval. SIAM: Review 37, 573-595 (1995)