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Abstract—Specification-based testing enables us to detect errors
in the implementation of functions defined in given specifications.
Its effectiveness in achieving high path coverage and efficiency in
generating test cases are always major concerns of testers. The auto-
matic test cases generation approach based on formal specifications
proposed by Liu and Nakajima is aimed at ensuring high effectiveness
and efficiency, but this approach has not been empirically assessed.
In this paper, we present an experiment for assessing Liu’s testing
approach. The result indicates that this testing approach may not be
effective in some circumstances. We discuss the result, analyse the
specific causes for the ineffectiveness, and describe some suggestions
for improvement.

Keywords—experiment, functional scenario, specification-based,
testing.

I. INTRODUCTION

SPECIFICATION-BASED testing enables us to detect er-
rors in the implementation of the functions defined in

given specifications. Since performing specification-based test-
ing is usually time consuming, automatic specification-based
testing is always attractive to the software industry. An auto-
matic test cases generation approach based on formal specifi-
cation known as functional scenario-based testing(FSBT) was
first introduced in Liu’s paper [1], which is aimed to ensure
high effectiveness and efficiency of specification-based testing.

This automatic specification-based testing approach in-
cludes an improved test strategy over the commonly used
disjunctive normal form strategy [2], and a decompositional
method for automatic test case generation. The approach is
applicable to any operation specified in terms of pre- and post-
conditions. The essence of the test strategy is to guarantee
that every functional scenario defined in a specification is
implemented “correctly” by the corresponding program. A
functional scenario of an operation defines an independent
relation between its input and output under a certain condition,
and usually expressed as a predicate expression. The predicate
expression is used as a foundation of automatic test case
generation algorithm. The function defined by a functional
scenario is actually a function of the software system, and
it should be implemented in the program. Therefore, by
using the test cases derived from functional scenarios, the
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implementation of functions defined in scenarios are expected
to be tested consequently.

Although the automatic testing approach proposed by Liu
is interesting in theory, it has not been empirically assessed
in practice. In this paper, we design an experiment to apply
this approach in a real testing environment and assess it by
measuring the coverage of execution paths. We specify the
formal specification, implement the program based on the
specification, perform testing for the program, and count how
many parts of the implementation program can be tested. The
result indicates that this testing approach is unlikely to be
sufficient for testing all parts of programs. The ineffectiveness
is caused by the drawback of the specification-based testing
and is hardly overcome if test cases are generated without
analysing the structure of program. But the effectiveness can
be improved by considering the relation between the formal
specification and the corresponding program when test cases
are generated.

Most of the improvement proposed by us is based on the
analysis of the relations between specification and program,
specifically the relations between the functional scenarios and
execution paths. An execution path is the implementation of
the function defined by a functional scenario. As described
in details in Section III, we analyse these relations in general
to ensure that the improvement can be used generally. Since
some specific causes of ineffectiveness of the testing approach
are associated with the specification itself, we propose some
suggestions that can be adopted if the target system of testing
is specified in the same specification language or has the
similar structure. The formal specification used in our experi-
ment is specified in SOFL (Structured Object-oriented Formal
Language)[3] and the program is implemented in Java.

The remainder of this paper is organized as follows. Section
II includes brief introduction of the original decompositional
testing approach, including the test strategy and the test
case generation algorithm. In Section III we describe the
relations between functional scenarios and execution paths in
program, which are two basic concepts in our experiment. The
experiment will be introduced in Section IV including purpose,
environment, results and results analysis. We will propose the
new criteria for test strategy in Section V, and we will also
express the test results of the extended approach in this section.
Section VI is related work, and in Section VII we conclude
the paper and point out future research directions.
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II. INTRODUCTION TO DECOMPOSITIONAL APPROACH TO
AUTOMATIC TEST CASE GENERATION

A. Test Strategy

As mentioned previously, the essence of the test strategy is
to ensure that every functional scenario defined in a specifica-
tion is implemented “correctly” by the corresponding program.
In order to explain the test strategy precisely, we need to
define the formal specification and functional scenario first.
For simplicity, let S(Siv , Sov)[Spre, Spost] denote the formal
specification of an operation S, where Siv is the set of all input
variables whose values are not changed by the operation, Sov

is the set of all output variables whose values are produced or
updated by the operation, and Spre and Spost are the pre and
post-condition of S, respectively.

For the post-condition Spost, let Spost ≡ (C1∧D1)∨ (C2∧
D2)∨...∨(Cn∧Dn), where each Ci(i ∈ {1, ..., n}) is a predi-
cate called a “guard condition” that contains no output variable
in Sov and ∀i,j∈{1,...,n} ·i 6= j ⇒ Ci ∧ Cj = false ; Di a
“defining condition” that contains at least one output variable
in Sov but no guard condition. Then, a formal specification
of an option can be expressed as a disjunction expression
(∼Spre∧C1∧D1)∨(∼Spre∧C2∧D2)∨...∨(∼Spre∧Cn∧Dn).
A conjunction ∼Spre∧Ci∧Di is realized as a functional sce-
nario. Note that we use ∼x and x to represent the initial value
before the operation and the final value after the operation of
external variable x, respectively. The decorated pre-condition
∼Spre = Spre[∼x/x] denotes the predicate resulting from
substituting the initial state ∼x for the final state x in pre-
condition Spre. We treat a conjunction ∼Spre ∧ Ci ∧Di as a
functional scenario because it defines an independent behavior:
when ∼Spre ∧ Ci is satisfied by the initial state (or input
variables), the final state (or the output variables) is defined
by the defining condition Di.

When performing testing, the tester must generate test cases
for each functional scenario. As we have mentioned that a
functional scenario expresses an independent function of an
operation, generating test cases for each scenario can guarantee
all of the functions defined in the specification are tested. Since
one test case may not enough to test one function efficiently,
the tester is required to generate more test cases for each
scenario. The automatic test generation algorithm will make
this process effective.

B. Test Case Generation Algorithm

As mentioned in the previous subsection, a functional
scenario is expressed as a conjunction ∼Spre ∧ Ci ∧ Di. To
generate test cases from this scenario, it must be decomposed
first. The decomposing process is divided into following two
steps:

• Step 1: Eliminate Defining condition. The defining
condition Di is eliminated first since the execution of
program only requires input values. Test cases genera-
tion depends on the pre-condition and guard condition,
and defining condition usually do not provide the main
information for test case generation. The conjunction
after eliminating defining condition is ∼Spre∧Ci, called
testing condition.

No. of Algorithms ⊖ Algorithms of test case generation for x1

1 = x1 = E

2 > x1 = E +∆x

3 < x1 = E −∆x

4 ≤,≥, 6= similar to above

• Step 2: Convert to disjunctive normal form. The
remainder of scenario is translated into an equivalent dis-
junctive normal form (DNF) with form P1∨P2∨ ...∨Pn.
A Pi is a conjunction of atomic predicate expressions, say
Q1

i ∧Q2
i ∧ ... ∧Qm

i .
Let Q(x1, x2, ..., xw) be one of the atomic predicate ex-

pressions Q1
i , Q

2
i , ..., Q

m
i mentioned previously. The variables

x1, x2, ..., xw is a sub set of all the input variables. Test cases
for the input variables involved in each atomic predicate ex-
pression Q can be generated using an algorithm that deals with
the following three situations, respectively. Here we are using
variables of numerical types as examples for convenience.

• Situation 1: If only one input variable is involved and
Q(x1) has the format x1 ⊖ E, where ⊖ ∈ {=, <,>
,≤,≥, 6=} is a relational operator and E is a constant
expression, using the algorithms listed in Table I to
generate test cases for variable x1.

• Situation 2: If only one input variable is involved and
Q(x1) has the format E1 ⊖ E2, where E1 and E2 are
both arithmetic expressions which may involve variable
x1, it is first transformed to the format x1⊖E. And then
apply Criterion 1.

• Situation 3: If more than one input variables are involved
and Q(x1, x2, ..., xw) has the format E1⊖E2, where E1

and E2 are both arithmetic expressions possibly involving
all the variables x1, x2, ..., xw. First randomly assigning
values from appropriate types to the input variables
x2, x3, ..., xw to transform the format into the format
E1 ⊖ E2, and then apply Criterion 2.

Note that if one input variable x appears in more than
one atomic predicate expressions, it needs to satisfy all the
expressions which it is involved in.

C. Formal specification Language

The formal specification used in our experiment is written
in SOFL. SOFL is one of the formal specification languages
that specifies operations in terms of pre- and post-conditions.
In principle, the assessment and the improvement are not
dependent on specific specification language, but we need a
specific one to specify the target system in experiment and to
express the improvement.

Due to using mathematical notations, SOFL specifications
are precise. The structure of SOFL specification has its own
characteristics, note that the following concepts of SOFL spec-
ification involved in our experiment and following discussion.

• process: A process in SOFL specification defines an
independent operation. It includes a list of input vari-
ables, a list of output variables, pre-condition, and post-
condition. In the following of this paper we use term

TABLE I: Test Cases Generation Algorithm
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Fig. 1: Example of specification and invariant

“process” replacing “operation” to keep consistent with
SOFL specification.

• module: A module is an assemblage of processes, and
each process can be decomposed to create a new module
including a group of lower level decomposed processes.

• external variable: External variables are variables be-
longing to the whole specification, and all of the pro-
cesses in the specification can use external variables
without listing them in the input variables list.

• invariant: An invariant is a predicate, it expresses a
property of types and variables. The invariant must be
sustained throughout the entire specification.

For example, Figure 1 shows a fragment of specification of
the target system in our experiment. It is an IC card system,
card holders can take public transportations and set monthly
payment. In this specification fragment, we defined a data
type named “ICcardInfo” saving information of each card.
The words in boldface are reserved words in SOFL, under
the key word “ext” is the definition of external variables.
“ CurrentDate” is an external variable in type Date, and it
presents the current date; “ ICcardBase” is a set of variables
which are in type ICcardInfo, and it contains all of the IC
card information in the system. The key word “inv” indicates
that the following predicate is an invariant and should be
satisfied throughout the entire specification. “is T” is a build-
in function checking whether the variable in the following
brackets is in type T. T stands for a specific type, and in
this case the type is ICcardInfo. The “isBefore” is a function
defined by user to check if one date is before another. The
invariant here requires that all of the variables in ICcardBase

should be in type ICcardInfo and date on which the IC card
is activated must be before the date monthly payment of the
card expires.

Fig. 2: Specification of Sort an Array

III. FUNCTIONAL SCENARIO AND EXECUTION PATH

The objective of program testing is to test all parts of the
program, to achieve this target need all execution paths in
the program be executed at least once. The execution path
presents an sequence of statements from the start state of the
program to the termination. For any set of values of input
variables, an execution path must exist to process the input
data. For the given values of set of input variables, there is an
unique execution path in program, and it expresses one specific
function of software system. Therefore, we can guarantee that
all parts of the program are tested if all the executable paths
are executed. Since our major concern in the experiment is the
effectiveness of the testing approach or how many parts in the
program of target system can be tested, we use the coverage of
the executable paths to measure the effectiveness of the testing
approach.

Based on the definition of functional scenario, an execution
path can be realized as an implementation of a functional
scenario. Theoretically, one functional scenario should cor-
respond to one and only one execution path if the program
is implemented by following the formal specification exactly.
But in practice, the relation between functional scenario and
execution path may not be a one-to-one correspondence. In
order to figure out how the test cases derived from a functional
scenario influence the coverage of execution paths, we define
that a scenario and a execution path have relation to each
other if all of the test cases derived from the scenario can be
accepted by the execution path. Although this definition is not
sufficient to describe various relations between scenarios and
paths, it is enough for the purpose of our experiment. The
summary of the relations between functional scenarios and
execution paths are listed in Table II.

A. One Scenario to No Path

If the function defined by the functional scenario is not
implemented in the program or implemented incorrectly, there
is no path being executed by applying the test cases derived
from the scenario. It may be caused by the programmer
misunderstanding the specification, or mistake made by the
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TABLE II: Test Cases Generation Algorithm

No. of relations Notation Discription Main Reasons

1 1...0 One Scenario to No Path Implementing incorrectly

2 1...1 One Scenario to One Path Implementing correctly, based on the specification exactly

3 1...1+ One Scenario to Multi Paths Refinement by specifiers or programmers

4 1+...1 Multi Scenarios to One Path Abstraction by programmers in program or incorrect implementation

5 0...1∗ Paths to No Scenario Incompletement of specification or implementing incorrectly

Fig. 3: Example program of ”One Scenario to No Path”

programmer during programming. Figure 2 shows the specifi-
cation of process “sort”, which defines an operation of sorting
items of an array in ascending order. “is bubbleSort” and
“is insertionSort” are two processes defined by user, they
sort an array by using bubble sort algorithm and insertion sort
algorithm respectively. Two functional scenario exists in the
process shown in Figure 2:

1) ∀i ∈ inds(array)·is int(array[i]) ∧ array.length ≤
1000 ∧ array.length ≤ 100 ∧ is bubbleSort(array) ∧
∀i, y ∈ inds(array) ∧ i ≤ y ·array[i] ≤ array[j]

2) ∀i ∈ inds(array)·is int(array[i]) ∧
array.length ≤ 1000 ∧ array.length > 100 ∧
is insertionSort(array)∧∀i, y ∈ inds(array)∧i ≤ y
·array[i] ≤ array[j]

Figure 3 shows the implementations of process “sort”, and
just one path exists in the program. Since the specification
requires an array with items in “int” as input variable while
the program accepts array with items in “double” as input,
the implementation is incorrect obviously. In this case, the test
cases derived from either of the scenarios will not be accepted
by the path, and neither of the functions defined in the two
scenarios has corresponding execution path in the program.

B. One Scenario to One Path

This is the ideal situation, the program is implemented
according to the specification exactly. Figure 4 illustrates the
implementation in which each functional scenario in process
“sort” has one and only one relative execution path.

C. One Scenario to Multi Paths

This situation always happens in real software development
projects. It is usually caused by the refinement, which may

Fig. 4: Example program of ”One Scenario to One Path”

occur in specification or program. Since some specifiers use
top-down approach when they specify specifications, they will
define the more general or more abstract process with less
details first, and then decompose the process into more than
one lower level process with more details. When we try to find
execution paths for the functional scenarios extracted from a
more abstract level specification, it is possible to find more
than one paths corresponding to one specific scenario if the
program is implemented based on the lower level specification.
If the information in lower level specification is not considered
in test cases generating process, some of the relative paths will
not be tested by using FSBT.

Another kind of refinement occurs in the program. It is
usually made by the programmer for different reasons, like
improving the effectiveness of program, complying with the
special programming rules, etc. Figure 5 shows another pos-
sible implementation of the specification shown in Figure 2.
In this case, the programmer makes three different methods
to sort the array with different length other than two in
specification. The test cases derived from the second scenario
can be accepted by two execution paths in program.

D. Multi Scenario to One Path

The relation multi scenario to one path is a reverse relation
of one scenario to multi paths, it usually occurs when program-
mer abstracts some functions defined in specification. The best
reason for programmer to abstract the function is to simplify
the program, figure 6 shows a different implementation of
process “sort” which uses a plain way to handle the sorting
instead of invoking two external methods. In this case, the two
scenarios in specification have the same relative execution path
in program.
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Fig. 5: Example program of ”One Scenario to Multi Paths”

Fig. 6: Example program of ”Multi Scenarios to One Path”

E. Paths to No Scenario

This situation is very common in practice, but unfortunately
it will often be ignored in specification-based testing. Accord-
ing to the concept of specification-based testing, the process of
testing is on the basis of what the specification says. But, in the
real testing environment, even all of the execution paths which
implement all of the defined functions are tested, it does not
mean that all parts of the program have been tested. The most
possible reason of the occurrence of this kind of relation is
the incompleteness of specification. The incompleteness can
be caused by lacking ideas or limitation of time, etc. But,
in the meantime, the programmer may try to, or have to,
handle some exceptions or add some functions undefined in
the specification. One specific case is that the program needs
to process the input variables even the values of the input do
not evaluate the predicates of the scenarios to be true. This
is because the specification just defines what kind of inputs
can be handled while the program must respond to all of the
possible inputs. The executable path, statements {1, 2, 4, 7,
8}, in the program shown in Figure 4 is a path without relative
functional scenario. It will be executed if the length of input
array is larger than 1,000. Usually we think these kind of paths
relative to process.

IV. EXPERIMENT

To investigate the effectiveness of Liu’s automatic
specification-based testing approach, we take an IC card
system as a target to perform testing. We count the number of
execution paths in the implementation program and calculate
the coverage of paths tested by using the testing approach. The
results indicate that this testing method may not be effective
in some circumstances. We analyse the results, discuss the
specific causes for the ineffectiveness, and propose some
suggestions for improvement. The specification and imple-
mentation of this IC card system are completed by different
researchers. The test cases are generated by another researcher
based on the generation criteria and algorithms.

A. Experiment Background

The target system of our experiment is an IC card system.
The IC card can be used to take the public transportations,
and it associates with a bank account. Since card holders can
use the card without authority, the maximum amount that can
be deposited in the IC card is limited to prevent the potential
economic loss by losing the card. Customers can swipe the
card to take transportation or use the card to buy train tickets.
If the amount in card is not enough, the customers can reload
by cash or from associated bank account. The customers can
also transfer the money back to the bank account, but they can
not get cash from the IC card directly. For the customers who
need commute, they can set monthly payment for one route
to get discount.

We design and define 6 processes in the top level module.
This module presents the most abstract definition of the IC
card system, and each of the 6 processes represents a function
of the system described previously. All the 6 processes are
described briefly in the following list. Based on the top-down
concept, we decompose each of these processes for further
defining. There are total 12 lower level processes defined in
the specification and some of them are reused to construct
higher level processes. All of these 18 processes are specified
formally by using SOFL and the implementation program is
developed by using Java under the Eclipse environment. The
implementation program contains 14 classes, 2200 lines code,
and 112 execution paths.

• RailwayTravel: This process handles the situation when
card holder swipes card to enter or leave station. When
customers enter the station, system checks whether the
card is in the IC card database and if the balance in
IC card is more than the pre-defined minimum amount.
When customers try to leave station, system first checks
whether the route just taken is marked as monthly pay-
ment. If it is, then open the gate to let the customer leave,
otherwise, discount the fare from the balance of the card.

• PurchaseTicket: This process defines the function that
IC card is used to buy tickets. The fare of the selected
route will be calculated first and then be discount from the
balance of the card. If the fare is more than the balance,
the purchase will fail.

• ReloadByCash: The function reloading money to IC
cared is defined is this process. Note that the reloading
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TABLE III: Information of Scenarios and Corresponding Executable Paths

No. ProcessName Scenarios Input Decomposed Paths

1 RailwayTravel 5 2 3 12

2 PurchesTicket 2 3 3 3

3 ReloadByCash 3 3 3 5

4 MonthlyPayment 2 5 5 78

5 ReloadFromAccount 3 4 3 7

6 TransferToAccount 2 4 3 7

will fail if the sum of reloading amount and the balance of
the card is more than the pre-defined maximum amount.

• SetMonthlyPayment: The function defined in this pro-
cess is used to set monthly payment. The card holders
select a route, a beginning date and number of months
they want to set. If the beginning date is the end of month,
the expire date should be the end of month. Otherwise
the two dates should be the same day in a month.

• ReloadFromAccount: The function defined in this pro-
cess is similar to the function defined in process
“ReloadByCash”. The difference is the reloading money
is from the associated account.

• TransferToAccount: Reverse of function defined in pro-
cess “ReloadFromAccount”. The transfer amount should
be less than the balance of the IC card.

If the functional scenarios used to generate test cases are
from a lower level module, the testing can be realized as a
unit testing. This is because each of the processes in lower
level module corresponds to a specific part of the program. If
the functional scenarios used to generate test cases are from a
higher level module, the testing can be realized as a integration
testing.

In our experiment, only the functional scenarios extracted
from the 6 processes in the top level are used to generate
test cases. The information of the scenarios and their relation
with corresponding execution paths are listed in Table III. Item
“Process Name” indicates the name of the processes in IC card
system specification; “Scenarios” expresses how many func-
tional scenarios are included in the process; “Input” shows
the number of input variables of the process; “Decomposed”
denotes the number of processes which are decomposed from
the process and “Paths” indicate how many execution paths
in program correspond to the process.

B. Results

Total 192 test cases are generated from the 17 functional
scenarios in the test, and the statistics of the result are listed
in Table IV. Item “Scenario No.” identifies the scenario in a
process; “Relative Paths” shows how many execution paths
in program have relation with the scenario; “Test Cases”
denotes how many test cases are generated from this scenario
and “Tested Paths” indicates how many paths are tested;
“Coverage” shows the coverage of executable paths. For
instance, the first line in Table IV indicates that the first
scenario in process “RailwayTravel” has one relative path in
implementation program, 5 test cases derived from it make
the only one path are tested, the path coverage is 100% in

this case. Note that the total of “Relative Paths” column is
113 because there is one path shared by the second and third
scenario of process “ReloadFromAccount”.

V. ANALYSIS AND PROPOSAL

The result of the experiment indicates that the FSBT is
effective in most circumstances, but it is unlikely to be
effective in some specific situations. The data in Table IV
show that all of the functional scenarios in the specification
are implemented in program, so the relation “one scenario
to no path” described in Section III does not exist in our
experiment. All of the paths that are in relation with “one
scenario to one path” or “multi scenarios to one path” are
tested as we analysed in Section III. The paths which are not
tested in experiment are the paths in relation to “one scenario
to multi paths” or “paths to no scenarios”, and it confirms
our analysis that the existence of these two relations usually
reduces the testing coverage of FSBT.

To test the execution paths in relation to “paths to no
scenario”, we should derive test cases from the functions
undefined in specification. Based on the concept of FSBT, test
cases derived from one defined function are actually derived
from the testing condition ∼Spre ∧ Ci, and the test cases
generated from the scenario can be presented as G(∼Spre∧Ci).
Here we use G(p) to denotes the set of test cases derived from
predicate p. In order to derive test cases for undefined function,
we use Criterion 1 to extend the contents of the set of test
cases derived from one defined function.

Criterion 1: Let ∼Spre ∧Ci ∧Di be a functional scenario
in specification, extend set of test cases G(∼Spre ∧ Ci) into
G((∼Spre ∧ Ci) ∨ ¬(∼Spre ∧ Ci)) = G(∼Spre ∧ Ci) ∪
G(¬(∼Spre ∧ Ci))

We use predicate ¬(∼Spre ∧ Ci) to present the func-
tions undefined in the scenario ∼Spre ∧ Ci ∧ Di. The test
cases derived from this predicate can be used to test the
execution paths implementing functions that are not defined
in the scenario. Note that this predicate can be constructed
into a DNF in which the conjunction clauses may be the
testing condition of other functional scenario in the same
operation. So that the test cases derived from this predicate
may satisfiey other scenarios. For example, considering the
first scenario of the process specification shown in Figure
2. The pre-condition in this scenario is ∀i ∈ inds(array)
·is int(array[i])∧ array.length ≤ 1000 and the guard con-

dition is array.length ≤ 100. By decomposing the predicate
¬(∀i ∈ inds(array) ·is int(array[i]) ∧ array.length ≤
1000∧ array.length ≤ 100), we can get one of the conjunc-
tion clause in its DNF, ∀i ∈ inds(array) ·is int(array[i])∧
array.length ≤ 1000∧array.length > 100, and it is exactly
the testing condition of the second scenario. Although it is
possible to generate test cases from the same testing condition

more than once, the duplication of generation do not affect the
test coverage.

In order to test the paths in relation “one scenario to multi
paths”, we must handle the problems causing this relation.
Two causes of the occurrence of this relation are refinement
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TABLE IV: Test Result

No. Process Name Scenario No. Relative Paths Test Cases Tested Paths Coverage(%)

1 RailwayTravel 1 1 5 1 100

2 RailwayTravel 2 6 15 4 67

3 RailwayTravel 3, 4, 5 1 15 1 100

4 RailwayTravel null 4 0 0 0

5 PurchaseTickets 1 1 8 1 100

6 PurchaseTickets 2 1 5 1 100

7 PurchaseTickets null 1 0 0 0

8 ReloadByCash 1 1 7 1 100

9 ReloadByCash 2 1 5 1 100

10 ReloadByCash 3 1 5 1 100

11 ReloadByCash null 2 0 0 0

12 MonthlyPayment 1 72 60 26 36

13 MonthlyPayment 2 3 17 2 67

14 MonthlyPayment null 3 0 0 0

15 ReloadFromAccount 1 1 8 1 100

16 ReloadFromAccount 2 1 6 1 100

17 ReloadFromAccount 3 2 20 2 100

18 ReloadFromAccount null 4 0 0 0

19 TransferToAccount 1 2 8 1 50

20 TransferToAccount 2 1 8 1 100

21 TransferToAccount null 4 0 0 0

in program and refinement in specification. To handle the first
cause we must analyse the structure of the program. The
second cause indicates that the functional scenario used to
generate test cases may be defined in a higher level specifi-
cation but the program is implemented based on the refined
lower level specification. Therefore the test cases generation
process should consider the refined specification, as reflected
in Criterion 2.

Criterion 2: Let F (x) be the disjunction of functional
scenarios that contain input variable x. And let F ′(x) be the
disjunction of functional scenarios which are in the decom-
posed module containing x. The test cases generated from the
scenarios in higher level module should satisfy the condition:
∀T ′

c ∈ G(F ′(x)) ·∃Tc ∈ G(F (x)) ·Tc(x) = T ′
c(x).

The notation Tc in Criterion 2 denotes one test case of high
level specification while the notation T ′

c indicates one test case
of lower level specification. Tc(x) and T ′

c(x) present the value
of input variable x in the test case Tc and T ′

c respectively.
The criterion requires all of the values of x generated from
lower level specification should be contained in the test cases
derived from higher level specification. Since the values of x is
generated from refined specification, the test cases containing
all of these values can be realized as generated by considering
refined specification.

In addition to the factors affecting the effectiveness of FSBT,
we also find that some test cases generated from functional
scenarios are invalid. By invalid we mean these test cases are
not satisfied with invariants, which are a predicate need to
be sustained throughout the entire specification. The invalid
test cases exist because the test cases are generated without
considering invariant. To avoid generating invalid test cases,

Criterion 3 can be applied in the test case generation process.
Criterion 3: Let an invariant on type T be It = ∀t ∈ T

·Q(t, w). Then replace G(∼Spre ∧Ci) with G(∼Spre ∧Ci ∧
∀x ∈ Siv ·is T (x) ⇒ Q(t, w)[x/t]).

In the former predicate, x stands for the variables of
scenario which are in type T . The criterion requires that if the
scenario has input variables in type T , the test cases generated
from the scenario should satisfy the invariant. So that we can
avoid generating invalid test cases violating the invariant.

Finally, we perform the experiment again with the three
criteria we proposed. The results of two experiments are shown
in Figure 7. The y-axis in Figure 7 is coverage and the x-axis
is the circumstances in which the coverage of paths in not 100
percent by using original FSBT. Note that we group the paths
in relation “paths to no scenario”. Obviously, the effectiveness
is improved by using our proposal.

VI. RELATED WORK

Specification-based testing methods have been well re-
searched based on different specification techniques. The test
case generation method [1], which underlies our experiment
is applicable to any operation specified in terms of pre- and
post-conditions.The test case generation method based on
algebraic specifications is introduced in [4], and the method
of generating test case from reactive system specification is
described in [5].

Cheon et al [6] use the assertions derived from formal
specification in Object Constraint Language (OCL) as test
oracles, and combine random tesing and OCL to carrying out
automated testing for Java program. Michlmayr et al. introduce
a framework of performing unit testing of publish/subscribe
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Fig. 7: Result of Improved FSBT

applications based on LTL specification in [7]. Khrushid et
al. [8] present a framework named TestEra for testing Java
program automatically based on specification. It employs
Alloy analyzer for instance enumeration to generate all non-
isomorphic test data [9]. Bandyopadhyay et al. [10] improve
the existing test input generation method based on sequence
diagrams of UML specification by consider the effects of the
messages on the states of the participating objects.

Some approaches are proposed to enhance the effectiveness
of the specification-based testing. Fraser et al. [11] investigate
the effects of the test case length on the test result. Based
on their experiments of specification based testing for reactive
systems, they find a long test case can achieve higher coverage
and fault detecting capability than a short one. They intend
to improve the effectiveness of specification-based testing by
change the length of test case. In [12], Liu et al. propose
a technique called “Vibration” method to ensure all of the
representative program paths of the program are traversed
by the test cases generated from formal specification. This
method provides a effective way for specification-based test
case generation.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we performed an experiment to assess FSBT
method. Based on the test results we find that this method
is effective when the specification is complete, but it may be
ineffective if the specification is incomplete. In the cases that
the specification is incomplete, we propose some criteria for
test case generation to ensure more execution paths can be
tested. The final results show that our criteria can improve the
effectiveness of the testing method. In the future, we intend
to use a large-scale system to assess the FSBT method and
the proposed criteria farther, and build a software tool to
implement the testing method with our criteria.
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