Search results for: energy balance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3209

Search results for: energy balance

599 High Temperature Oxidation of Cr-Steel Interconnects in Solid Oxide Fuel Cells

Authors: Saeed Ghali, Azza Ahmed, Taha Mattar

Abstract:

Solid Oxide Fuel Cell (SOFC) is a promising solution for the energy resources leakage. Ferritic stainless steel becomes a suitable candidate for the SOFCs interconnects due to the recent advancements. Different steel alloys were designed to satisfy the needed characteristics in SOFCs interconnect as conductivity, thermal expansion and corrosion resistance. Refractory elements were used as alloying elements to satisfy the needed properties. The oxidation behaviour of the developed alloys was studied where the samples were heated for long time period at the maximum operating temperature to simulate the real working conditions. The formed scale and oxidized surface were investigated by SEM. Microstructure examination was carried out for some selected steel grades. The effect of alloying elements on the behaviour of the proposed interconnects material and the performance during the working conditions of the cells are explored and discussed. Refractory metals alloying of chromium steel seems to satisfy the needed characteristics in metallic interconnects.

Keywords: SOFCs, Cr-steel, interconnects, oxidation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1225
598 A Comparative Study of Turbulence Models Performance for Turbulent Flow in a Planar Asymmetric Diffuser

Authors: Samy M. El-Behery, Mofreh H. Hamed

Abstract:

This paper presents a computational study of the separated flow in a planer asymmetric diffuser. The steady RANS equations for turbulent incompressible fluid flow and six turbulence closures are used in the present study. The commercial software code, FLUENT 6.3.26, was used for solving the set of governing equations using various turbulence models. Five of the used turbulence models are available directly in the code while the v2-f turbulence model was implemented via User Defined Scalars (UDS) and User Defined Functions (UDF). A series of computational analysis is performed to assess the performance of turbulence models at different grid density. The results show that the standard k-ω, SST k-ω and v2-f models clearly performed better than other models when an adverse pressure gradient was present. The RSM model shows an acceptable agreement with the velocity and turbulent kinetic energy profiles but it failed to predict the location of separation and attachment points. The standard k-ε and the low-Re k- ε delivered very poor results.

Keywords: Turbulence models, turbulent flow, wall functions, separation, reattachment, diffuser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3770
597 Sky Farming: The Alternative Concept of Green Building Using Vertical Landscape Model in Urban Area as an Effort to Achieve Sustainable Development

Authors: Nadiah Yola Putri, Nesia Putri Sharfina, Traviata Prakarti

Abstract:

This paper is a literature review presented descriptively to review the concept of green building to face the challenge of sustainable development and food in urban areas. In this paper, researchers initiated the concept of green building with sky farming method. Sky farming use vertical landscape system in order to realizing food self-sufficient green city. Sky farming relying on plantings and irrigation system efficiency in the building which is adopted the principles of green building. Planting system is done by applying hydroponic plants with Nutrient Film Technique (NFT) using energy source of solar cell and grey water from the processing of waste treatment plant. The application of sky farming in urban areas can be a recommendation for the design of environmental-friendly construction. In order to keep the land and distance efficiency, this system is a futuristic idea that would be the connector of human civilization in the future.

Keywords: Green building, urban area, sky farming, vertical landscape.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343
596 Traction Behavior of Linear Piezo-Viscous Lubricants in Rough Elastohydrodynamic Lubrication Contacts

Authors: Punit Kumar, Niraj Kumar

Abstract:

The traction behavior of lubricants with the linear pressure-viscosity response in EHL line contacts is investigated numerically for smooth as well as rough surfaces. The analysis involves the simultaneous solution of Reynolds, elasticity and energy equations along with the computation of lubricant properties and surface temperatures. The temperature modified Doolittle-Tait equations are used to calculate viscosity and density as functions of fluid pressure and temperature, while Carreau model is used to describe the lubricant rheology. The surface roughness is assumed to be sinusoidal and it is present on the nearly stationary surface in near-pure sliding EHL conjunction. The linear P-V oil is found to yield much lower traction coefficients and slightly thicker EHL films as compared to the synthetic oil for a given set of dimensionless speed and load parameters. Besides, the increase in traction coefficient attributed to surface roughness is much lower for the former case. The present analysis emphasizes the importance of employing realistic pressure-viscosity response for accurate prediction of EHL traction.

Keywords: EHL, linear pressure-viscosity, surface roughness, traction, water/glycol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1259
595 Coaxial Helix Antenna for Microwave Coagulation Therapy in Liver Tissue Simulations

Authors: M. Chaichanyut, S. Tungjitkusolmun

Abstract:

This paper is concerned with microwave (MW) ablation for a liver cancer tissue by using helix antenna. The antenna structure supports the propagation of microwave energy at 2.45 GHz. A 1½ turn spiral catheter-based microwave antenna applicator has been developed. We utilize the three-dimensional finite element method (3D FEM) simulation to analyze where the tissue heat flux, lesion pattern and volume destruction during MW ablation. The configurations of helix antenna where Helix air-core antenna and Helix Dielectric-core antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The simulation protocol was power control (10 W, 300s). Our simulation result, both helix antennas have heat flux occurred around the helix antenna and that can be induced the temperature distribution similar (teardrop). The region where the temperature exceeds 50°C the microwave ablation was successful (i.e. complete destruction). The Helix air-core antenna and Helix Dielectric-core antenna, ablation zone or axial ratios (Widest/length) were respectively 0.82 and 0.85; the complete destructions were respectively 4.18 cm3 and 5.64 cm3

Keywords: Liver cancer, Helix antenna, Finite element, Microwave ablation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
594 Effect of Wind and Humidity on Microwave Links in North West Libya

Authors: M. S. Agha, A. M. Eshahiry, S. A. Aldabbar, Z. M. Alshahri

Abstract:

The propagation of microwave is affected by rain and dust particles causing signal attenuation and de-polarization. Computations of these effects require knowledge of the propagation characteristics of microwave and millimeter wave energy in the climate conditions of the studied region. This paper presents effect of wind and humidity on wireless communication such as microwave links in the North West region of Libya (Al-Khoms). The experimental procedure is done on three selected antennae towers (Nagaza station, Al-Khoms center station, Al-Khoms gateway station) for determining the attenuation loss per unit length and cross-polarization discrimination (XPD) change. Dust particles are collected along the region of the study, to measure the particle size distribution (PSD), calculate the concentration, and chemically analyze the contents, then the dielectric constant can be calculated. The results show that humidity and dust, antenna height and the visibility affect both attenuation and phase shift; in which, a few considerations must be taken into account in the communication power budget.

Keywords: Attenuation, scattering, transmission loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 786
593 Contributions to Design of Systems Actuated by Shape Memory Active Elements

Authors: Daniel Amariei, Calin O. Miclosina, Ion Vela, Marius Tufoi, Cornel Mituletu

Abstract:

Even it has been recognized that Shape Memory Alloys (SMA) have a significant potential for deployment actuators, the number of applications of SMA-based actuators to the present day is still quite small, due to the need of deep understanding of the thermo-mechanical behavior of SMA, causing an important need for a mathematical model able to describe all thermo-mechanical properties of SMA by relatively simple final set of constitutive equations. SMAs offer attractive potentials such as: reversible strains of several percent, generation of high recovery stresses and high power / weight ratios. The paper tries to provide an overview of the shape memory functions and a presentation of the designed and developed temperature control system used for a gripper actuated by two pairs of differential SMA active springs. An experimental setup was established, using electrical energy for actuator-s springs heating process. As for holding the temperature of the SMA springs at certain level for a long time was developed a control system in order to avoid the active elements overheating.

Keywords: active element, actuator, model, Nitinol, prehension

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
592 Simulation of Internal Flow Field of Pitot-Tube Jet Pump

Authors: Iqra Noor, Ihtzaz Qamar

Abstract:

Pitot-tube Jet pump, single-stage pump with low flow rate and high head, consists of a radial impeller that feeds water to rotating cavity. Water then enters stationary pitot-tube collector (diffuser), which discharges to the outside. By means of ANSYS Fluent 15.0, the internal flow characteristics for Pitot-tube Jet pump with standard pitot and curved pitot are studied. Under design condition, realizable k-e turbulence model and SIMPLEC algorithm are used to calculate 3D flow field inside both pumps. The simulation results reveal that energy is imparted to the flow by impeller and inside the rotor, forced vortex type flow is observed. Total pressure decreases inside pitot-tube whereas static pressure increases. Changing pitot-tube from standard to curved shape results in minimum flow circulation inside pitot-tube and leads to a higher pump performance.

Keywords: CFD, flow circulation, high pressure pump, impeller, internal flow, pickup tube pump, rectangle channels, rotating casing, turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 755
591 On the Reduction of Side Effects in Tomography

Authors: V. Masilamani, C. Vanniarajan, Kamala Krithivasan

Abstract:

As the Computed Tomography(CT) requires normally hundreds of projections to reconstruct the image, patients are exposed to more X-ray energy, which may cause side effects such as cancer. Even when the variability of the particles in the object is very less, Computed Tomography requires many projections for good quality reconstruction. In this paper, less variability of the particles in an object has been exploited to obtain good quality reconstruction. Though the reconstructed image and the original image have same projections, in general, they need not be the same. In addition to projections, if a priori information about the image is known, it is possible to obtain good quality reconstructed image. In this paper, it has been shown by experimental results why conventional algorithms fail to reconstruct from a few projections, and an efficient polynomial time algorithm has been given to reconstruct a bi-level image from its projections along row and column, and a known sub image of unknown image with smoothness constraints by reducing the reconstruction problem to integral max flow problem. This paper also discusses the necessary and sufficient conditions for uniqueness and extension of 2D-bi-level image reconstruction to 3D-bi-level image reconstruction.

Keywords: Discrete Tomography, Image Reconstruction, Projection, Computed Tomography, Integral Max Flow Problem, Smooth Binary Image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
590 Performance Study of Scraped Surface Heat Exchanger with Helical Ribbons

Authors: S. Ali, M. Baccar

Abstract:

In this work, numerical simulations were carried out using a specific CFD code in order to study the performance of an innovative Scraped Surface Heat Exchanger (SSHE) with helical ribbons for Bingham fluids (threshold fluids). The resolution of three-dimensional form of the conservation equations (continuity, momentum and energy equations) was carried out basing on the finite volume method (FVM). After studying the effect of dimensionless numbers (axial Reynolds, rotational Reynolds and Oldroyd numbers) on the hydrodynamic and thermal behaviors within SSHE, a parametric study was developed, by varying the width of the helical ribbon, the clearance between the stator wall and the tip of the ribbon and the number of turns of the helical ribbon, in order to improve the heat transfer inside the exchanger. The effect of these geometrical numbers on the hydrodynamic and thermal behaviors was discussed.

Keywords: Heat transfer, helical ribbons, hydrodynamic behavior, parametric study, scraped surface heat exchanger, thermal behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250
589 Analyzing Irbid’s Food Waste as Feedstock for Anaerobic Digestion

Authors: Assal E. Haddad

Abstract:

Food waste samples from Irbid were collected from 5 different sources for 12 weeks to characterize their composition in terms of four food categories; rice, meat, fruits and vegetables, and bread. Average food type compositions were 39% rice, 6% meat, 34% fruits and vegetables, and 23% bread. Methane yield was also measured for all food types and was found to be 362, 499, 352, and 375 mL/g VS for rice, meat, fruits and vegetables, and bread, respectively. A representative food waste sample was created to test the actual methane yield and compare it to calculated one. Actual methane yield (414 mL/g VS) was greater than the calculated value (377 mL/g VS) based on food type proportions and their specific methane yield. This study emphasizes the effect of the types of food and their proportions in food waste on the final biogas production. Findings in this study provide representative methane emission factors for Irbid’s food waste, which represent as high as 68% of total Municipal Solid Waste (MSW) in Irbid, and also indicate the energy and economic value within the solid waste stream in Irbid.

Keywords: Food waste, solid waste management, anaerobic digestion, methane yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 823
588 The Effect of Blockage Factor on Savonius Hydrokinetic Turbine Performance

Authors: Thochi Seb Rengma, Mahendra Kumar Gupta, P. M. V. Subbarao

Abstract:

Hydrokinetic turbines can be used to produce power in inaccessible villages located near rivers. The hydrokinetic turbine uses the kinetic energy of the water and maybe put it directly into the natural flow of water without dams. For off-grid power production, the Savonius-type vertical axis turbine is the easiest to design and manufacture. This proposal uses three-dimensional Computational Fluid Dynamics (CFD) simulations to measure the considerable interaction and complexity of turbine blades. Savonius hydrokinetic turbine (SHKT) performance is affected by a blockage in the river, canals, and waterways. Putting a large object in a water channel causes water obstruction and raises local free stream velocity. The blockage correction factor or velocity increment measures the impact of velocity on the performance. SHKT performance is evaluated by comparing power coefficient (Cp) with tip-speed ratio (TSR) at various blockage ratios. The maximum Cp was obtained at a TSR of 1.1 with a blockage ratio of 45%, whereas TSR of 0.8 yielded the highest Cp without blockage. The greatest Cp of 0.29 was obtained with a 45% blockage ratio compared to a Cp max of 0.18 without a blockage.

Keywords: Savonius hydrokinetic turbine, blockage ratio, vertical axis turbine, power coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173
587 Gas-Liquid Flow on Smooth and Textured Inclined Planes

Authors: J.J. Cooke, S. Gu, L.M. Armstrong, K.H. Luo

Abstract:

Carbon Capture & Storage (CCS) is one of the various methods that can be used to reduce the carbon footprint of the energy sector. This paper focuses on the absorption of CO2 from flue gas using packed columns, whose efficiency is highly dependent on the structure of the liquid films within the column. To study the characteristics of liquid films a CFD solver, OpenFOAM is utilised to solve two-phase, isothermal film flow using the volume-of-fluid (VOF) method. The model was validated using existing experimental data and the Nusselt theory. It was found that smaller plate inclination angles, with respect to the horizontal plane, resulted in larger wetted areas on smooth plates. However, only a slight improvement in the wetted area was observed. Simulations were also performed using a ridged plate and it was observed that these surface textures significantly increase the wetted area of the plate. This was mainly attributed to the channelling effect of the ridges, which helped to oppose the surface tension forces trying to minimise the surface area. Rivulet formations on the ridged plate were also flattened out and spread across a larger proportion of the plate width.

Keywords: CCS, liquid film flow, packed columns, wetted area

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
586 Physicochemical and Microbiological Properties of Kefir, Kefir Yogurt and Chickpea Yogurt

Authors: Nuray Güzeler, Elif Ari, Gözde Konuray, Çağla Özbek

Abstract:

The consumption of functional foods is very common. For this reason, many products which are probiotic, prebiotic, energy reduced and fat reduced are developed. In this research, physicochemical and microbiological properties of functional kefir, kefir yogurt and chickpea yogurt were examined. For this purpose, pH values, titration acidities, viscosity values, water holding capacities, serum separation values, acetaldehyde contents, tyrosine contents, the count of aerobic mesophilic bacteria, lactic acid bacteria count and mold-yeast counts were determined. As a result of performed analysis, the differences between titration acidities, serum separation values, water holding capacities, acetaldehyde and tyrosine contents of samples were statistically significant (p < 0.05). There were no significant differences on pH values, viscosities, and microbiological properties of samples (p > 0.05). Consequently industrial production of functional kefir yogurt and chickpea yogurt may be advised.

Keywords: Chickpea yogurt, kefir, kefir yogurt, milk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789
585 Optimal Control Strategy for High Performance EV Interior Permanent Magnet Synchronous Motor

Authors: Mehdi Karbalaye Zadeh, Ehsan M. Siavashi

Abstract:

The controllable electrical loss which consists of the copper loss and iron loss can be minimized by the optimal control of the armature current vector. The control algorithm of current vector minimizing the electrical loss is proposed and the optimal current vector can be decided according to the operating speed and the load conditions. The proposed control algorithm is applied to the experimental PM motor drive system and this paper presents a modern approach of speed control for permanent magnet synchronous motor (PMSM) applied for Electric Vehicle using a nonlinear control. The regulation algorithms are based on the feedback linearization technique. The direct component of the current is controlled to be zero which insures the maximum torque operation. The near unity power factor operation is also achieved. More over, among EV-s motor electric propulsion features, the energy efficiency is a basic characteristic that is influenced by vehicle dynamics and system architecture. For this reason, the EV dynamics are taken into account.

Keywords: PMSM, Electric Vehicle, Optimal control, Traction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
584 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh

Authors: S. M. Anowarul Haque, Md. Asiful Islam

Abstract:

Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.

Keywords: Load forecasting, artificial neural network, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 686
583 Preparation and Investigation of Photocatalytic Properties of ZnO Nanocrystals: Effect of Operational Parameters and Kinetic Study

Authors: N. Daneshvar, S. Aber, M. S. Seyed Dorraji, A. R. Khataee, M. H. Rasoulifard

Abstract:

ZnO nanocrystals with mean diameter size 14 nm have been prepared by precipitation method, and examined as photocatalyst for the UV-induced degradation of insecticide diazinon as deputy of organic pollutant in aqueous solution. The effects of various parameters, such as illumination time, the amount of photocatalyst, initial pH values and initial concentration of insecticide on the photocatalytic degradation diazinon were investigated to find desired conditions. In this case, the desired parameters were also tested for the treatment of real water containing the insecticide. Photodegradation efficiency of diazinon was compared between commercial and prepared ZnO nanocrystals. The results indicated that UV/ZnO process applying prepared nanocrystalline ZnO offered electrical energy efficiency and quantum yield better than commercial ZnO. The present study, on the base of Langmuir-Hinshelwood mechanism, illustrated a pseudo first-order kinetic model with rate constant of surface reaction equal to 0.209 mg l-1 min-1 and adsorption equilibrium constant of 0.124 l mg-1.

Keywords: Zinc oxide nanopowder, Electricity consumption, Quantum yield, Nanoparticles, Photodegradation, Kinetic model, Insecticide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3569
582 Iraqi Short Term Electrical Load Forecasting Based On Interval Type-2 Fuzzy Logic

Authors: Firas M. Tuaimah, Huda M. Abdul Abbas

Abstract:

Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.

Keywords: Short term load forecasting, prediction interval, type 2 fuzzy logic systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
581 Controlling Transient Flow in Pipeline Systems by Desurging Tank with Automatic Air Control

Authors: I. Abuiziah, A. Oulhaj, K. Sebari, D. Ouazar

Abstract:

Desurging tank with automatic air control “DTAAC” is a water hammer protection device, operates either an open or closed surge tank according to the water level inside the surge tank, with the volume of air trapped in the filling phase, this protection device has the advantages of its easy maintenance, and does not need to run any external energy source (air compressor). A computer program has been developed based on the characteristic method to simulate flow transient phenomena in pressurized water pipeline systems, it provides the influence of using the protection devices to control the adverse effects due to excessive and low pressure occurring in this phenomena. The developed model applied to a simple main water pipeline system: pump combined with DTAAC connected to a reservoir.  The results obtained provide that the model is an efficient tool for water hammer analysis. Moreover; using the DTAAC reduces the unfavorable effects of the transients.

Keywords: DTAAC, Flow transient, Numerical model, Pipeline system, Protection devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2814
580 DEMO Based Optimal Power Purchase Planning Under Electricity Price Uncertainty

Authors: Tulika Bhattacharjee, A. K.Chakraborty

Abstract:

Due to the deregulation of the Electric Supply Industry and the resulting emergence of electricity market, the volumes of power purchases are on the rise all over the world. In a bid to meet the customer-s demand in a reliable and yet economic manner, utilities purchase power from the energy market over and above its own production. This paper aims at developing an optimal power purchase model with two objectives viz economy and environment ,taking various functional operating constraints such as branch flow limits, load bus voltage magnitudes limits, unit capacity constraints and security constraints into consideration.The price of purchased power being an uncertain variable is modeled using fuzzy logic. DEMO (Differential Evolution For Multi-objective Optimization) is used to obtain the pareto-optimal solution set of the multi-objective problem formulated. Fuzzy set theory has been employed to extract the best compromise non-dominated solution. The results obtained on IEEE 30 bus system are presented and compared with that of NSGAII.

Keywords: Deregulation, Differential Evolution, Multi objective Optimization, Pareto Optimal Set, Optimal Power Flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
579 Construction and Performance Characterization of the Looped-Tube Travelling-Wave Thermoacoustic Engine with Ceramic Regenerator

Authors: Abdulrahman S. Abduljalil, Zhibin Yu, Artur J. Jaworski, Lei Shi

Abstract:

In a travelling wave thermoacoustic device, the regenerator sandwiched between a pair of (hot and cold) heat exchangers constitutes the so-called thermoacoustic core, where the thermoacoustic energy conversion from heat to acoustic power takes place. The temperature gradient along the regenerator caused by the two heat exchangers excites and maintains the acoustic wave in the resonator. The devices are called travelling wave thermoacoustic systems because the phase angle difference between the pressure and velocity oscillation is close to zero in the regenerator. This paper presents the construction and testing of a thermoacoustic engine equipped with a ceramic regenerator, made from a ceramic material that is usually used as catalyst substrate in vehicles- exhaust systems, with fine square channels (900 cells per square inch). The testing includes the onset temperature difference (minimum temperature difference required to start the acoustic oscillation in an engine), the acoustic power output, thermal efficiency and the temperature profile along the regenerator.

Keywords: Regenerator, Temperature gradient, Thermoacoustic, Travelling-wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2266
578 Photoluminescence Study of Erbium-Mixed Alkylated Silicon Nanocrystals

Authors: Khamael M. Abualnaja, Lidija Šiller, Benjamin R. Horrocks

Abstract:

Alkylated silicon nanocrystals (C11-SiNCs) were prepared successfully by galvanostatic etching of p-Si(100) wafers followed by a thermal hydrosilation reaction of 1-undecene in refluxing toluene in order to extract C11-SiNCs from porous silicon. Erbium trichloride was added to alkylated SiNCs using a simple mixing chemical route. To the best of our knowledge, this is the first investigation on mixing SiNCs with erbium ions (III) by this chemical method. The chemical characterization of C11-SiNCs and their mixtures with Er3+(Er/C11-SiNCs) were carried out using X-ray photoemission spectroscopy (XPS). The optical properties of C11- SiNCs and their mixtures with Er3+ were investigated using Raman spectroscopy and photoluminescence (PL). The erbium mixed alkylated SiNCs shows an orange PL emission peak at around 595 nm that originates from radiative recombination of Si. Er/C11-SiNCs mixture also exhibits a weak PL emission peak at 1536 nm that originates from the intra-4f transition in erbium ions (Er3+). The PL peak of Si in Er/C11-SiNCs mixture is increased in the intensity up to three times as compared to pure C11-SiNCs. The collected data suggest that this chemical mixing route leads instead to a transfer of energy from erbium ions to alkylated SiNCs.

Keywords: Photoluminescence, Silicon Nanocrystals, Erbium, Raman Spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2740
577 Removal of Hydrogen Sulfide in Terms of Scrubbing Techniques using Silver Nano-Particles

Authors: SeungKyu Shin, Jeong Hyub Ha, Sung Han, JiHyeon Song

Abstract:

Silver nano-particles have been used for antibacterial purpose and it is also believed to have removal of odorous compounds, oxidation capacity as a metal catalyst. In this study, silver nano-particles in nano sizes (5-30 nm) were prepared on the surface of NaHCO3, the supporting material, using a sputtering method that provided high silver content and minimized conglomerating problems observed in the common AgNO3 photo-deposition method. The silver nano-particles were dispersed by dissolving Ag-NaHCO3 into water, and the dispersed silver nano-particles in the aqueous phase were applied to remove inorganic odor compounds, H2S, in a scrubbing reactor. Hydrogen sulfide in the gas phase was rapidly removed by the silver nano-particles, and the concentration of sulfate (SO4 2-) ion increased with time due to the oxidation reaction by silver as a catalyst. Consequently, the experimental results demonstrated that the silver nano-particles in the aqueous solution can be successfully applied to remove odorous compounds without adding additional energy sources and producing any harmful byproducts

Keywords: Silver nano-particles, Scrubbing, Oxidation, Hydrogen sulfide, Ammonia

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402
576 Multi-Wavelength Q-Switched Erbium-Doped Fiber Laser with Photonic Crystal Fiber and Multi-Walled Carbon Nanotubes

Authors: Zian Cheak Tiu, Harith Ahmad, Sulaiman Wadi Harun

Abstract:

A simple multi-wavelength passively Q-switched Erbium-doped fiber laser (EDFL) is demonstrated using low cost multi-walled carbon nanotubes (MWCNTs) based saturable absorber (SA), which is prepared using polyvinyl alcohol (PVA) as a host polymer. The multi-wavelength operation is achieved based on nonlinear polarization rotation (NPR) effect by incorporating 50 m long photonic crystal fiber (PCF) in the ring cavity. The EDFL produces a stable multi-wavelength comb spectrum for more than 14 lines with a fixed spacing of 0.48 nm. The laser also demonstrates a stable pulse train with the repetition rate increases from 14.9 kHz to 25.4 kHz as the pump power increases from the threshold power of 69.0 mW to the maximum pump power of 133.8 mW. The minimum pulse width of 4.4 μs was obtained at the maximum pump power of 133.8 mW while the highest energy of 0.74 nJ was obtained at pump power of 69.0 mW.

Keywords: Multi-wavelength, Q-switched, multi-wall carbon nanotube, photonic crystal fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488
575 Optical and Structural Properties of a ZnS Buffer Layer Fabricated with Deposition Temperature of RF Magnetron Sputtering System

Authors: Won Song, Bo-Ra Koo, Seok Eui Choi, Yong-Taeg Oh, Dong-Chan Shin

Abstract:

Optical properties of sputter-deposited ZnS thin films were investigated as potential replacements for CBD(chemical bath deposition) CdS buffer layers in the application of CIGS solar cells. ZnS thin films were fabricated on glass substrates at RT, 150oC, 200oC, and 250oC with 50 sccm Ar gas using an RF magnetron sputtering system. The crystal structure of the thin film is found to be zinc blende (cubic) structure. Lattice parameter of ZnS is slightly larger than CdS on the plane and thus better matched with that of CIGS. Within a 400-800 nm wavelength region, the average transmittance was larger than 75%. When the deposition temperature of the thin film was increased, the blue shift phenomenon was enhanced. Band gap energy of the ZnS thin film tended to increase as the deposition temperature increased. ZnS thin film is a promising material system for the CIGS buffer layer, in terms of ease of processing, low cost, environmental friendliness, higher transparency, and electrical properties

Keywords: ZnS thin film, Buffer layer, CIGS, Solar cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2398
574 Numerical Study for Compressive Strength of Basalt Composite Sandwich Infill Panel

Authors: Viriyavudh Sim, Jung Kyu Choi, Yong Ju Kwak, Oh Hyeon Jeon, Woo Young Jung

Abstract:

In this study, we investigated the buckling performance of basalt fiber reinforced polymer (BFRP) sandwich infill panels. Fiber Reinforced Polymer (FRP) is a major evolution for energy dissipation when used as infill material of frame structure, a basic Polymer Matrix Composite (PMC) infill wall system consists of two FRP laminates surrounding an infill of foam core. Furthermore, this type of component is for retrofitting and strengthening frame structure to withstand the seismic disaster. In-plane compression was considered in the numerical analysis with ABAQUS platform to determine the buckling failure load of BFRP infill panel system. The present result shows that the sandwich BFRP infill panel system has higher resistance to buckling failure than those of glass fiber reinforced polymer (GFRP) infill panel system, i.e. 16% increase in buckling resistance capacity.

Keywords: Basalt fiber reinforced polymer, buckling performance, FEM analysis, sandwich infill panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351
573 Design and Construction of an Impulse Current Generator for Lightning Strike Experiments

Authors: Kamran Yousefpour, Mojtaba Rostaghi-Chalaki, Jason Warden, David Wallace, Chanyeop Park

Abstract:

There has been a rising trend in using impulse current generators to investigate the lightning strike protection of materials including aluminum and composites in structures such as wind turbine blade and aircraft body. The focus of this research is to present an impulse current generator built in the High Voltage Lab at Mississippi State University. The generator is capable of producing component A and D of the natural lightning discharges in accordance with the Society of Automotive Engineers (SAE) standard, which is widely used in the aerospace industry. The generator can supply lightning impulse energy up to 400 kJ with the capability of producing impulse currents with magnitudes greater than 200 kA. The electrical circuit and physical components of an improved impulse current generator are described and several lightning strike waveforms with different amplitudes is presented for comparing with the standard waveform. The results of this study contribute to the fundamental understanding the functionality of the impulse current generators and present an impulse current generator developed at the High Voltage Lab of Mississippi State University.

Keywords: impulse current generator, lightning, society of automotive engineers, capacitor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768
572 Grid-Connected Inverter Experimental Simulation and Droop Control Implementation

Authors: Nur Aisyah Jalalludin, Arwindra Rizqiawan, Goro Fujita

Abstract:

In this study, we aim to demonstrate a microgrid system experimental simulation for an easy understanding of a large-scale microgrid system. This model is required for industrial training and learning environments. However, in order to create an exact representation of a microgrid system, the laboratory-scale system must fulfill the requirements of a grid-connected inverter, in which power values are assigned to the system to cope with the intermittent output from renewable energy sources. Aside from that, during fluctuations in load capacity, the grid-connected system must be able to supply power from the utility grid side and microgrid side in a balanced manner. Therefore, droop control is installed in the inverter’s control board to maintain a balanced power sharing in both sides. This power control in a stand-alone condition and droop control in a grid-connected condition must be implemented in order to maintain a stabilized system. Based on the experimental results, power control and droop control can both be applied in the system by comparing the experimental and reference values.

Keywords: Droop control, droop characteristic, grid-connected inverter, microgrid, power control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3075
571 Rapid Discharge of Solid-State Hydrogen Storage Using Porous Silicon and Metal Foam

Authors: Loralee P. Potter, Peter J. Schubert

Abstract:

Solid-state hydrogen storage using catalytically-modified porous silicon can be rapidly charged at moderate pressures (8 bar) without exothermic runaway. Discharge requires temperatures of approximately 110oC, so for larger storage vessels a means is required for thermal energy to penetrate bulk storage media. This can be realized with low-density metal foams, such as Celmet™. This study explores several material and dimensional choices of the metal foam to produce rapid heating of bulk silicon particulates. Experiments run under vacuum and in a pressurized hydrogen environment bracket conditions of empty and full hydrogen storage vessels, respectively. Curve-fitting of the heating profiles at various distances from an external heat source is used to derive both a time delay and a characteristic time constant. System performance metrics of a hydrogen storage subsystem are derived from the experimental results. A techno-economic analysis of the silicon and metal foam provides comparison with other methods of storing hydrogen for mobile and portable applications. 

Keywords: conduction, convection, kinetics, fuel cell

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
570 Integration of Fixed and Variable Speed Wind Generator Dynamics with Multimachine AC Systems

Authors: A.H.M.A.Rahim

Abstract:

The impact of fixed speed squirrel cage type as well as variable speed doubly fed induction generators (DFIG) on dynamic performance of a multimachine power system has been investigated. Detailed models of the various components have been presented and the integration of asynchronous and synchronous generators has been carried out through a rotor angle based transform. Simulation studies carried out considering the conventional dynamic model of squirrel cage asynchronous generators show that integration, as such, could degrade to the AC system performance transiently. This article proposes a frequency or power controller which can effectively control the transients and restore normal operation of fixed speed induction generator quickly. Comparison of simulation results between classical cage and doubly-fed induction generators indicate that the doubly fed induction machine is more adaptable to multimachine AC system. Frequency controller installed in the DFIG system can also improve its transient profile.

Keywords: Doubly-fed generator, Induction generator, Multimachine system modeling, Wind energy systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355