Optical and Structural Properties of a ZnS Buffer Layer Fabricated with Deposition Temperature of RF Magnetron Sputtering System
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Optical and Structural Properties of a ZnS Buffer Layer Fabricated with Deposition Temperature of RF Magnetron Sputtering System

Authors: Won Song, Bo-Ra Koo, Seok Eui Choi, Yong-Taeg Oh, Dong-Chan Shin

Abstract:

Optical properties of sputter-deposited ZnS thin films were investigated as potential replacements for CBD(chemical bath deposition) CdS buffer layers in the application of CIGS solar cells. ZnS thin films were fabricated on glass substrates at RT, 150oC, 200oC, and 250oC with 50 sccm Ar gas using an RF magnetron sputtering system. The crystal structure of the thin film is found to be zinc blende (cubic) structure. Lattice parameter of ZnS is slightly larger than CdS on the plane and thus better matched with that of CIGS. Within a 400-800 nm wavelength region, the average transmittance was larger than 75%. When the deposition temperature of the thin film was increased, the blue shift phenomenon was enhanced. Band gap energy of the ZnS thin film tended to increase as the deposition temperature increased. ZnS thin film is a promising material system for the CIGS buffer layer, in terms of ease of processing, low cost, environmental friendliness, higher transparency, and electrical properties

Keywords: ZnS thin film, Buffer layer, CIGS, Solar cell.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1074733

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2346

References:


[1] M.M. Islam, S. Ishizuka, A. Yamada, K. Sakurai, S. NIki, T. Sakurai, K. Akimoto, Solar Energy Materials & Solar cells 93 (2009) 970.
[2] M.A. Contreras, B. Egass, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, R. Noufi, Prog. Photovolt: Res. Appl. 7 (1999) 311.
[3] A. Goudarzi, G.M. Aval, R. Sahraei, H. Ahmadpoor, Thin Solid Films 516 (2008) 4953
[4] K. Kushiya, Solar Energy 77 (2004) 717.
[5] A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, H. Tampo, P.J. Fons, K. Iwata, S. Niki, Appl. Phys. Lett. 85 (2004) 5607.
[6] T. Nakada, and M. Mizutani, Jpn.J. Appl. Phys. 41 (2002) 165.
[7] T. Nakada, M. Mizutani, proc. 23rd IEEE Photovoltaic Specialist Conf., Anchorage 2000, IEEE New York, pp.529 (2000).
[8] S.W. Shin, S.R. Kang, K.V. Gurav, J.H. Yun, J.H. Moon, J.Y. Lee, J.H. Kim, Solar Energy 85 (2011) 2903.
[9] J.W. Lee, S.W. Lee, S.Y. Cho, S.T. Kim, I.Y. Park, Y.D. Choi, Mater. Chem. Phys. 77 (2002) 254.
[10] U. Gangopadhyay, K.G. Kim, D. Mangalaraj, J.S. Yi, Appl. Surf. Sci. 230 (2004) 364.
[11] V.L. Gayou, B. S. Hernandez, M.E. Constantino, E.R. Andrés, T. D├¡az, R.D. Macuil, M.R. L├│pez, Vacuum 84 (2010) 1191.
[12] Z.Z. Zhang, D.Z. Shen, J.Y. Zhang, C.X. Shan, Y.M. Lu, Y.C. Liu, B.H. Li, D.X. Zhao, B. Yao, X. W. Fan, Thin Solid Films 513 (2006) 114.
[13] S.D. Sartale, B.R. Sankapal, M. Lux-Steiner, A. Ennaoui, Thin Solid Films 480 (2005) 168.
[14] D.A. Johnston, M.H. Garletto, K.T.R. Reddy, I. Forbes, R.W. Miles, Thin Solid Films 403 (2002) 102.
[15] A. Kassim, S. Nagalingam, H.S. Min, N. Karrim, Arabian Journal of Chemistry 3 (2010) 243.
[16] H. Hiramatsu, H. Ohta, M. Hirano, H. Hosono, Solid State Communications 124 (2002) 411.