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DEMO Based Optimal Power Purchase
Planning Under Electricity Price Uncertainty
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Abstract—Due to the deregulation of the Electric Supplypurchase is usually an uncertain variable. Modeliggsame is

Industry and the resulting emergence of electrigitarket, the
volumes of power purchases are on the rise all themworld. In a
bid to meet the customer’'s demand in a reliable yetdeconomic
manner, utilities purchase power from the energykaetaover and
above its own production. This paper aims at degietpan optimal
power purchase model with two objectives viz ecopoand
environment ,taking various functional operatingnstoaints such as
branch flow limits, load bus voltage magnitudesitémunit capacity
constraints and security constraints into consti@rarhe price of
purchased power being an uncertain variable is teddgsing fuzzy
logicc. DEMO (Differential Evolution For Multi-objdive
Optimization) is used to obtain the pareto-optisw@ltion set of the
multi-objective problem formulated. Fuzzy set thedras been
employed to extract the best compromise non-domihablution.
The results obtained on IEEE 30 bus system areepted and
compared with that of NSGAII.

Keywords—Deregulation, Differential Evolution, Multi objevg
Optimization, Pareto Optimal Set, Optimal Powen¥lo

|. INTRODUCTION

a complex task because of uncertainty resultingnfrihe
inherent dependence of price to other,
unpredictable factors, such as variations in densaredsupply
situation. This type of uncertainty may not dolithe nature
of a probabilistic distribution and is best mizde by fuzzy
logic for representing the relationship among défe

variables[2].In addition to this, following the page of Clean
Air Act Amendments in November 1990 there is arréased
emphasis on emission reduction. This requires tiidities

should also include into account emissions as tibgto be
minimized, thereby making the OPF problem a mujiective

one. In contrast to single-objective optimizatidwatt tries to
determine one global best solution for an optinizat
problem, generally several trade-off solutions geaerated in
multi-objective optimization, dubbed as the parefatimal

set.A Pareto optimal set is a set of solutions #rat non-
dominated with respect to each other. Pareto optimiation

sets are often preferred to single solutions bexdle final
solution of the decision-maker is always a trade-of

THE electric power industry has been deregulated andthe jiterature includes several OPF studies thatt deith

restructured all over the world which has resulted

market-based competition by creating an open markgf.

environment. To ensure economic and reliable ojperatf the
power system utilities go for power purchases witesirable.
In state-utilities in India, the state load is sligxgh by the state-
owned generation plants as well as by power pusth&®m
Central Government owned generating plants andptveer
market. Power purchased from central sector is getar
through ABT [1] and that purchased from power maike
charged at Market Clearing Price (MCP). Thus, thgnoum
scheduling problem becomes distributing
internal generators and power purchased from thdrale
sector and power market, so as to minimize cogeagration.
However, the uncertainty associated with the MCRandhis

multi-objectives and applied evolutionary optiminat
hniques,details of which can be found in [3]. G¥§
NPGA, SPEA, NSGA-II[4], MOPSO and fuzzified MOPSO
(FMOPSO) , fuzzy clustering-based particle swar@RBO)
algorithms, etc., constitute the leading multi-alije
evolutionary computation approaches that have lzgmlied

to solve the multi-objective Economic Emission DRiggh

(EED) problem.With the power system open access, th

economic/emission dispatch problem is extendednttude
power transaction from the market. In [2] a metHodgy to

load ambng§, auate power purchases in an uncertain envirohrign

presented. However, a dc load flow formulation wasd and
network losses and other security constraints weod
considered. Moreover emission from the thermalsuigitnot

optimization a complex task. In this paper the pOWE,nsidered. In [5] an optimization-based methodr fthe

purchased from the central sector is not considdred power
available in market is modeled as a ‘market-generathus,
load demand will be served by a set of internalegators and
market generator. generators share the maximum ety
with power to be purchased from market dependingharket
price. Hence the development of an optimal germmasind
power purchase schedule is a much desired requitameer
such a scenario. The price of electricity duringpawer
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integrated consideration of power purchase #etins and
the scheduling of thermal units is presented dase the

augmented Lagrangian decomposition and coordination

method. Again, a single-objective formulation isedisas
emission is not considered.Rui Ma et al formulatechulti-

objective optimal transaction planning problem llasen

Interior point method [6]. A similar optimal powg@urchase
planning problem is formulated and solved usin@dstsmic

genetic algorithm in [7]. A multi objective poweuzchase and
distribution planning model was developed by Zheb@l in

[8]. However, emission is not considered in [7] d8HAlso,

the problem is not treated as a true multi objectivoblem in
any of these works.
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In this paper the optimal power flow problem haerbdealt The total function of emissiof, (kg/hr), can be expressed as,
with considering power purchase from the marketmalti- 1

objective optimization problem is formulated comsidg Ng 2
short-term power purchases from the power markie¢ dost IZ ai IDgi +h IDgi N 4)
function has two components viz generation cost poser
purchase cost. Thus, under this scenario, the gtmer
scheduling/OPF problem is an optimization problerh agenerator .
minimization of total cost of power to be generabgdnternal
generators and to be purchased from the marketrgtipg o ) ) o ] )
cost of power system).Apart from the cost, the ottgective ~ 1he Objective function is optimized with the follg
that we are looking to minimize here is emissiohe Bffered Cconstraints. _
prices for power is treated as fuzzy variables. mEM Power Balance Constraint
(Differential Evolution for Multiobjective Optimizéon) as . )
presented by Robic and Filipic in [9] is used tdveothe OVerall power balancel,-\lgquatlon for the network is:
optimal purchase planning problem formulated. _

The proposed approach has been tested on modiEH | (iélpgi *Ru)-Fp~R =0 ®)
30-Bus system with 6 generators, where four geoesadre \yhere,
considered as utility generators and the remaitwtgas non- P, = Load Demand (MW)

utility/market generators.
P, = Transmission loss (MW)

Il. PROBLEM FORMULATION Ng = Number of utility generators connected to thevoek.
The multi-objective economic/environmental optirpalver
purchase planning problem has been mathematicallyUnity Capacity Constraint
formulated as follows:

where a’i , ,BI and yI are emission coefficients of th® i

B. Constraints

These inequality constraints define the limits isg on the
active and reactive power production from genesathre to
the machine’s design related limitations.

min min

A. Objective Function

The objective of the given problem is to minimizetibthe
total cost and the total emission. Thus the objectunction

can be represented as, Pgi < l:’gi s Pgi (6)
i min min
min[F , F, ] ) Qgi < Qgi < Qgi
Where, Fand F, are total cost and total emission of (7)
) min
generators respectively. whereF’gi and Pgi]w are the lower and upper bounds on

The total cost has two components viz., cost ofgrow be

generated by internal generators (i.e., utility eyators) and the active power output from thg generator, andgg?mand
power purchase cost. Thus the same could be repeesas,

Ng Qg?ay are the lower and upper bounds on the reactive powe
F=>C(P.)+C (P_) 2 .
1 =21 g mr - mr output from thet generator.

Where, Ci = Cost of active power generation (in $/MW/hr) by Security Constraint
i generator

Cmr = Cost of purchasing power form the market(irﬁ‘SP' l=12...L Whereﬁ is the power transmitted

$IMW/hr). max’
Pg = Power output of'I generator (MW) over linel. R ., denotes the max limit of the transmissible
mr = Power to be purchased from market (MW) power over linel . L is the total number of lines.
Ng req
The cost of generated power ($/hr) in terms of mdnt -leRi 2 SR (8)
variables viz generator powers can be expressed as, Ng 1=
_ 2 , max _ p .
Ci (Pgi) =& +bPyi + Py 3) ZSri <P Ry ©)
. , i max
whereaI , q , CI are the cost curve coefficients. SRi < SRi (10)

Where, SR = spinning reserve capability of unit

International Scholarly and Scientific Research & Innovation 6(1) 2012 102 1SN1:0000000091950263



Open Science Index, Energy and Power Engineering Vol:6, No:1, 2012 publications.waset.org/913.pdf

World Academy of Science, Engineering and Technology
International Journal of Energy and Power Engineering
Voal:6, No:1, 2012

cost. The cost of purchased power from the markétgoan
uncertain variable is modeled as a triangular fummmber
Sgay =maximum spinning reserve capability of unit with linear functions for left and right membershipThe

Slr?eq = system spinning reserve requirement.

minimum price is] = ()IO,I)l 1y ) and the offered price to
0“0

Vimm <V SVimax (11)
import the maximum power
Where. iSAmax = (/‘max’lf‘max’r/‘max)'The data related toly and
V.™" = L ower voltage magnitude bounds for tfbis. A are taken from [2].
ma : .
Vi =Upper voltage magnitude bounds for thiiss. The step-by-step algorithm of the proposed appriscs

V, = Voltage magnitude at biis described below:

Sep (1) Read the database for the generator data, bus data
ll.  DEMO: DIFFERENTIAL EVOLUTION FORMULTI-OBJECTIVE  transformer data and transmission line data.
OPTIMIZATION Step (2) Assume suitable population size, maximum number of
In this paper, DEMO: Differential Evolution for Mul generations.
objective Optimization as presented by Robic afigiEiin [9]  Step (3) Randomly generate the individuals.
is used to solve the economic-emission dispatctbleno Step (4) Run power flow using the Newton-Raphson method
formulated. DEMO is a variant of differential evban (DE) for each set of generating patterfi%i corresponding to a
[10]. Based on DE, DEMO builds on the success afePy particular generation and after that determinecksldus
algorithm and adds the mechanisms of non-dominstetihg  generation, bus voltage magnitudes and phase aaghdsthe
and crowding distance metric as used by stateefthmulti  pyses. Also calculate power flow in each transmissine of
objective evolutionary algorithms. DEMO modifies eth the system.

selection mechanism used to decide when a Chilbhcrep the aep (5) Perform mutation and crossover for each targabvec
parent. Details regarding the DEMO algorithm carfdaed in - gnd create a trial vector.

[9]. Sep (6) Perform selection for each target vector as maeatio
in the pseudo code for DEMO, described in the nevi
Pseudo-code for DEMO: section.
a) Evaluate the initial population P of random gep (7) Stop if the maximum number of generations is
individuals. reached otherwise go to Step 4.
b) While stopping criterion not met, do: Sep (8) After evaluating a series of generations ,the final
c) For each individualR (i =1, ..., popSize) from P pareto optimal solution set is generated and thst be

compromise solution is selected as the final sofutStore the

total cost of generation ,emission and the gdiwgrgattern

corresponding to the individual deemed best.

e) Evaluate the candidate. In practical operation, only one of the pareto-oyat

f) If the candidate dominates the parent, the canelidagolutions has to be used from the entire set gestbday the
replaces the parent. If the parent dominates thgigorithm. To avoid error due to imprecision of kamm
candidate, the candidate is discarded. Otherwise, tjudgment the methodology for determining best campse

repeat:
d) Create candidate C from parefy.

candidate is added in the population. solution by fuzzy set theory as employed in [11} lzeen
0) If the population has more than popSize individualsnade use of in this paper.
truncate it.

h) Randomly enumerate the individuals fh. V. CASE STUDIES

The described DEMO's procedure is one of the three 1n€ IEEE 30-bus system has been used to show the
variants presented in [10]. It is called DEMO/parand is the effectiveness of the proposed algorithm. The codteamission
most elementary variant. Throughout this paper DEpa@ent coefficients’ data used is given in Table VI. Theigsion from

is used. The key parameters of control are pomulasize the market generators is ignored to preserve tberdealized
nature of the solution algorithm.

In this work, generators connected to bus nos. 13&re
considered as market generators and the remaimsingilay
IV. DEMO SOLUTION METHODOLOGY generators. Voltage magnitude limits of generatmes are set
In this paper DEMO is used to solve the multi-objec t0 095pu.<V <1lpu. and load buses are set to
optimization problem defined by (1).As already neméd, the  095p.u.<V < 105pu. .Voltage angle limits are taken as

total cost is the sum of cost of power to be geRerdy _14< <0 in degree. The transmission line loadability limit
internal generators (i.e., utility generators) goever purchase

(NP), scaling factor F ) and crossover constar(th).
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for generator output paths is taken as 150MW andhf® rest
of the lines it is taken as 25MW. The total loadtlué IEEE
30-Bus network is 283.40 MW. Spinning reserve regent

is taken as 15% of the normal load on the system, (i
0.15*283.4 MW=50 MW).The proposed algorithm has beer
implemented in MATLAB 2008b on a PC (Core2Duo, 2,GB

2.5 GHz).

The Optimal power purchase problem is solved usir
DEMO. The population size @)l scaling factor (F) and

crossover constant fLhave been selected as 200, 0.8 and
for system under consideration in the proposed DE
algorithm. Results obtained from DEMO are companéith

those obtained from NSGAII. The population sizeyssover
and mutation probabilities for NSGAIl have beerest&dd as
200, 0.9 and 0.2, respectively, for NSGAII. Maximaomber
of generations has been selected as 150 for botM@EBNd
NSGAII. To compare and evaluate the quality ofribsults 10
runs of each algorithm were performed. Total cestjssion,

loss and CPU time obtained from DEMO and NSGAIl ar b

summarized in Table I. Only the results pertairtimghe best
of the 10 runs is highlighted. Table IV providesltage
magnitude and phase angle of all buses obtained BFEMO

and NSGAIl. The emission-cost trade-off curve foB®AII

and DEMO are shown in Fig. 1 and Fig 2 respectivEhere
are no line loadability limit violations. Spinningeserve
requirements are also satisfied, with the utilitgngrators
carrying more reserves than the minimum requireabld I

gives a summary of the spinning reserve requirenasrt
allocation. Results shown in Table I, suggest BPBMO and
NSGAII obtain nearly similar results with respeattotal cost,
emission and transmission loss. The
computational cost of the DEMO approach is duediiteonal
calculations, such as the DEMO specific electioacpdure.
An analysis of the pareto fronts of NSGAIl (Fig. &phd

relatively feay
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DEMO (Fig. 2) reveals that NSGAII returns greatamter of - -

. . +  NSGAI
solutions belonging to the true pareto front arsb dlas better O DEMG
spread of solution. 760 - .

TABLE | 7551 ]
GENERATION, COST, EMISSION, LOoSs ANDCPUTIME OBTAINED FROMDEMO
AND NSGAII £
Particulars DEMO NSGAII g o T
o
Pe1(MW) 125.5452 127.1718
745 4
Pe2(MW) 45.3000 45.980(
Pes(MW) 23.5600 23.5400 ol |
Poa(MW) 25.2700 23.1000 -
Pes(MW) 30.0000 29.9900 738 s s . s . s .
220 225 230 235 240 245 250 285 260
Pse(MW) 40.0000 40.0000 Ernizsion{kghr
Total R(MW) 289.6752 289.7814 Fig. 3 Pareto Optimal Solutions obtained using N8@Ad DEMO
Cost($/hr) 743.2600 742.3100 represented on the same scale
Emission(Kg/hr) 228.9100 230.4000 . . .
——— 062752 06.381b However, in the stated problem the Decision Mak) is
oss(MW) - - interested in knowing trade-off optimal solutions the
CPU Time(s) 757.000¢ 598.0040 intermediate cost and emission area. As is eviftemt Fig.3,
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interest instead of finding solution on the enfiezeto optimal
front, thereby allowing the DM to consider only at of
solutions that lie on the regions of interest sat tn better and
more reliable decision can be made.

For the purpose of fair comparison, the data ptesein
Table | is obtained with the market price held ¢ant at
2.46%/MWhr for both DEMO and NSGAII. As is eviddntm
the value of power drawn for the market generatding,
offered price being less, the market generators gatting

TABLE Il e ; ;
BUSVOLTAGE MAGNITUDE AND PHASE ANGLE OBTAINED FROM DEMO AND loaded at the upper “rr_"ts of their operatlo_nagqn .
NSGAIl To confirm the efficacy of the algorithm in genémgt
. DEMO NSGAI proper purchase plan, the algorithm has also bheemvith the
2 \'\Clo'tagfd Pdhase Angle \'\zo“agted F(’jhase Angle offered price held at an arbitrary value of 20$/MWiihe
@ (pi?.;"u € (degree) (pi?;'u e | (degree) results as presented in Table V, highlight the thett with
1 1.0600 0.0000 1.0600 0.0000 Load Scaling Factor (LSF)=1.0, the power drawn frima
2 1.043( -2.513! 1.043( -2.5446 market generators is lesser as compared to the rpdnaen
El 1.029¢ -3.661 1.0293 -3.729( when the offered price is 2.46$/MWhr. Also, theutes for
4 1.0218 -4.3647 1.0218 -4.4473 _ . . .
5 10100 75,3616 10100 sa3160 LSF=1.3 reveal that with the_ increase in Ioad,nt?wer dra_wn
6 1.017, 5.257¢ 1.0177 5.3664 from the market generator increases irrespectivhefprice
7 1.006¢ -7.055¢ 1.006¢ -7.1486 in-order-to maintain system stability. This shiftthe optimal
8 1.0100 -5.3069 1.0100 -54637) operating point with changing values of offereccprand LSF
9 1.0539 -5.5306 1.0539 58365 indicates the capability of the algorithm to gemera good
10 1.0474 7.3873 1.0474 74917 'naicates pability 9 9 9
11 1.082( -2.393; 1.0820 -2.5006 dispatch and power purchase plan.
12 1.0622 -5.821: 1.0632 -5.9148
13 1.0710 -3.0024 1.0710 -3.0959 TABLEV
14 1.0483 -6.8313 1.0483 -6.9263] GENERATION AND COST FOR OFFERED PRIGES20/MWHR
15 1.0426 -7.0453 1.0426 -7.1417| LSF 1.0 1.3
16 1.049: -6.748( 1.0491 -6.8458 Pei(MW) 130.786! 200.000!
17 1.042: -7.399¢ 1.0425 -7.5017 Pg2(MW) 56.7300 50.100Q
18 1.0321 -7.8540 1.0321 -7.9531 Pes(MW) 38.2000 33.080Q
19 1.0291 -8.1462 1.0291 -8.2468 Paa(MW) 35.0000 33.770Q
20 1.032¢ -8.013¢ 1.0328 -8.1153 Pes(MW) 15.270( 25.180(
21 1.035: -7.859! 1.0352 -7.9632 Pee(MW) 13.640( 27.610(
22 1.035¢ -7.855: 1.0358 -7.9592 Cost($/hr) 1312.76 1700.0b
23 1.0312 -7.7516 1.0311 -7.8513
24 1.0245 -8.3600 1.0245 -8.4642 TABLE VI
25 1.019¢ -8.752: 1.0198 -8.8623 GENERATORCOST AND EMISSION COEFFICIENTS
26 1.002: -9.169¢ 1.0021 -9.2799 Gener | N; N, Na N, Ns No
27 1.0257 -8.7378 1.0257 -8.8516 ator
28 1.0151 -5.6625 1.0151 -5.7816 Ng
29 1.0059 -9.9617 1.0059 -10.0756 a 0.0037! | 0.0175( [ 0.0625( | 0.0083: Market
30 0.994¢ -10.840: 0.994+ -10.954: bi 2.0C 1.7t 1.0C 3.2t Generator
G 0.0 0.0 0.0 0.0
TABLE Il 0 0.0126 0.0200 0.0270 0.0291
SPINNING RESERVEDATA B -1.1000 | -0.1000 | -0.0100| -0.005(
Gener- Max Spinning Available Available ¥i 22.98: 25.31¢ 25.50¢ 24.90(
ator reserve reserve(MW) reserve(MW) Pumin 50 20 15 10
capability DEMO NSGAII Prax 200 80 50 35
(MW)
Po1 30.0C S74.4544 70.636¢
Ps: 10.00 34.7000 37.9900 VI CONCLUSION
Pos 05.00 26.4400 26.0900 This paper focuses on generating an optimal powerhase
Pa4 05.00 09.7300 10.5000 schedule so as to minimize total cost and totalssion,

The difference between the best and the worstsmistion
for multiple (ten) runs of the program is very lésscase of
both DEMO (0.17 %)) and NSGAII (0.08%) as illusedtin
Table IV, which shows the consistency in the result

TABLE IV
BEST AND WORST RESULTS FOREMO AND NSGAII

Best Solution Worst Solution %Difference
Particul Cost Emission| Cost Emission Cost Emission
-ars ($/hr) (Kg/hr) | ($/hr) (Kg/hr) | ($/hr) | (Kg/hr)
DEMO | 743.26 228.91 744.52 230.90 0.17 0.87
NSGAIl | 742.3¢ 230.3¢ | 742.9¢ 230.9( 0.0¢ 0.2z
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considering power purchases from the market. DEMO i

successfully implemented to solve the problem. Témults
establish the feasibility of such an approach agtilight the
benefits gained, such as, saving in total systest coand
reduction in emission as a result of strategic diawn this
paper, DEMO is used in resolving the proposed elarapd
the same is compared vis-a-vis NSGAIl. DEMO achseve
similar solution as NSGAIl on the modified IEEE 30sb

system. However, in case of DEMO most of the pareto

optimal solutions lie in the intermediate trade-a#gion
where-in the best compromise solution is supposerkside
and hence this algorithm can be considered to lre p@cise
in its approach. This high convergence precisidpsh® make
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a good power purchase plan. DEMO'’s only disadvantager
NSGAIl is its higher computational time due to the
computational complexity involved.
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