Search results for: eXtreme Gradient Boosting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 528

Search results for: eXtreme Gradient Boosting

318 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.

Keywords: Deep learning, long-short-term memory, energy, renewable energy load forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
317 Control of Pressure Gradient in the Contraction of a Wind Tunnel

Authors: Dehghan Manshadi M., Mirzaei M., Soltani M. R., Ghorbanian K.

Abstract:

Subsonic wind tunnel experiments were conducted to study the effect of tripped boundary layer on the pressure distribution in the contraction region of the tunnel. Measurements were performed by installing trip strip at two different positions in the concave portion of the contraction. The results show that installation of the trip strips, have significant effects on both turbulence and pressure distribution. The reduction in the free stream turbulence and reduction of the wall static pressure distribution deferred signified with the location of the trip strip.

Keywords: Contraction, pressure distribution, trip strip, turbulence intensity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3037
316 Octonionic Reformulation of Vector Analysis

Authors: Bhupendra C. S. Chauhan, P. S. Bisht, O. P. S. Negi

Abstract:

According to celebrated Hurwitz theorem, there exists four division algebras consisting of R (real numbers), C (complex numbers), H (quaternions) and O (octonions). Keeping in view the utility of octonion variable we have tried to extend the three dimensional vector analysis to seven dimensional one. Starting with the scalar and vector product in seven dimensions, we have redefined the gradient, divergence and curl in seven dimension. It is shown that the identity n(n - 1)(n - 3)(n - 7) = 0 is satisfied only for 0, 1, 3 and 7 dimensional vectors. We have tried to write all the vector inequalities and formulas in terms of seven dimensions and it is shown that same formulas loose their meaning in seven dimensions due to non-associativity of octonions. The vector formulas are retained only if we put certain restrictions on octonions and split octonions.

Keywords: Octonions, Vector Space and seven dimensions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1199
315 Sparsity-Aware Affine Projection Algorithm for System Identification

Authors: Young-Seok Choi

Abstract:

This work presents a new type of the affine projection (AP) algorithms which incorporate the sparsity condition of a system. To exploit the sparsity of the system, a weighted l1-norm regularization is imposed on the cost function of the AP algorithm. Minimizing the cost function with a subgradient calculus and choosing two distinct weighting for l1-norm, two stochastic gradient based sparsity regularized AP (SR-AP) algorithms are developed. Experimental results exhibit that the SR-AP algorithms outperform the typical AP counterparts for identifying sparse systems.

Keywords: System identification, adaptive filter, affine projection, sparsity, sparse system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
314 Exploring Dynamics of Regional Creative Economy

Authors: Ari Lindeman, Melina Maunula, Jani Kiviranta, Ronja Pölkki

Abstract:

The aim of this paper is to build a vision of the utilization of creative industry competences in industrial and services firms connected to Kymenlaakso region, Finland, smart specialization focus areas. Research indicates that creativity and the use of creative industry’s inputs can enhance innovation and competitiveness. Currently creative methods and services are underutilized in regional businesses and the added value they provide is not well grasped. Methodologically, the research adopts a qualitative exploratory approach. Data is collected in multiple ways including a survey, focus groups, and interviews. Theoretically, the paper contributes to the discussion about the use creative industry competences in regional development, and argues for building regional creative economy ecosystems in close co-operation with regional strategies and traditional industries rather than as treating regional creative industry ecosystem initiatives separate from them. The practical contribution of the paper is the creative vision for the use of regional authorities in updating smart specialization strategy as well as boosting industrial and creative & cultural sectors’ competitiveness. The paper also illustrates a research-based model of vision building.

Keywords: Business, cooperation, creative economy, regional development, vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 825
313 Artificial Intelligence Support for Interferon Treatment Decision in Chronic Hepatitis B

Authors: Alexandru George Floares

Abstract:

Chronic hepatitis B can evolve to cirrhosis and liver cancer. Interferon is the only effective treatment, for carefully selected patients, but it is very expensive. Some of the selection criteria are based on liver biopsy, an invasive, costly and painful medical procedure. Therefore, developing efficient non-invasive selection systems, could be in the patients benefit and also save money. We investigated the possibility to create intelligent systems to assist the Interferon therapeutical decision, mainly by predicting with acceptable accuracy the results of the biopsy. We used a knowledge discovery in integrated medical data - imaging, clinical, and laboratory data. The resulted intelligent systems, tested on 500 patients with chronic hepatitis B, based on C5.0 decision trees and boosting, predict with 100% accuracy the results of the liver biopsy. Also, by integrating the other patients selection criteria, they offer a non-invasive support for the correct Interferon therapeutic decision. To our best knowledge, these decision systems outperformed all similar systems published in the literature, and offer a realistic opportunity to replace liver biopsy in this medical context.

Keywords: Interferon, chronic hepatitis B, intelligent virtualbiopsy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
312 An Efficient Iterative Updating Method for Damped Structural Systems

Authors: Jiashang Jiang

Abstract:

Model updating is an inverse eigenvalue problem which concerns the modification of an existing but inaccurate model with measured modal data. In this paper, an efficient gradient based iterative method for updating the mass, damping and stiffness matrices simultaneously using a few of complex measured modal data is developed. Convergence analysis indicates that the iterative solutions always converge to the unique minimum Frobenius norm symmetric solution of the model updating problem by choosing a special kind of initial matrices.

Keywords: Model updating, iterative algorithm, damped structural system, optimal approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
311 Implementation of Building Information Modeling in Turkish Government Sector Projects

Authors: Mohammad Lemar Zalmai, Mustafa Nabi Kocakaya, Cemil Akcay, Ekrem Manisali

Abstract:

In recent years, the Building Information Modeling (BIM) approach has been developed expeditiously. As people see the benefits of this approach, it has begun to be used widely in construction projects and some countries made it mandatory to get more benefits from it. To promote the implementation of BIM in construction projects, it will be helpful to get some relevant information from surveys and interviews. The purpose of this study is to research the current adoption and implementation of BIM in public projects in Turkey. This study specified the challenges of BIM implementation in Turkey and proposed some solutions to overcome them. In this context, the challenges for BIM implementation and the factors that affect the BIM usage are determined based on previous academic researches and expert opinions by conducting interviews and questionnaire surveys. Several methods are used to process information in order to obtain weights of different factors to make BIM widespread in Turkey. This study concluded interviews' and questionnaire surveys' outcomes and proposed some suggestions to promote the implementation of BIM in Turkey. We believe research findings will be a good reference for boosting BIM implementation in Turkey.

Keywords: Building Information Modeling, BIM, BIM implementations, Turkish construction industry, Turkish government sector projects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829
310 Derivation of Darcy’s Law using Homogenization Method

Authors: Kannanut Chamsri

Abstract:

Darcy’s Law is a well-known constitutive equation describing the flow of a fluid through a porous medium. The equation shows a relationship between the superficial or Darcy velocity and the pressure gradient which was first experimentally observed by Henry Darcy in 1855-1856. In this study, we apply homogenization method to Stokes equation in order to derive Darcy’s Law. The process of deriving the equation is complicated, especially in multidimensional domain. Thus, for the sake of simplicity, we use the indicial notation as well as the homogenization. This combination provides a smooth, simple and easy technique to derive Darcy’s Law.

Keywords: Darcy’s Law, Homogenization method, Indicial notation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5018
309 A Family of Minimal Residual Based Algorithm for Adaptive Filtering

Authors: Noor Atinah Ahmad

Abstract:

The Minimal Residual (MR) is modified for adaptive filtering application. Three forms of MR based algorithm are presented: i) the low complexity SPCG, ii) MREDSI, and iii) MREDSII. The low complexity is a reduced complexity version of a previously proposed SPCG algorithm. Approximations introduced reduce the algorithm to an LMS type algorithm, but, maintain the superior convergence of the SPCG algorithm. Both MREDSI and MREDSII are MR based methods with Euclidean direction of search. The choice of Euclidean directions is shown via simulation to give better misadjustment compared to their gradient search counterparts.

Keywords: Adaptive filtering, Adaptive least square, Minimalresidual method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
308 New Product-Type Estimators for the Population Mean Using Quartiles of the Auxiliary Variable

Authors: Amer Ibrahim Falah Al-Omari

Abstract:

In this paper, we suggest new product-type estimators for the population mean of the variable of interest exploiting the first or the third quartile of the auxiliary variable. We obtain mean square error equations and the bias for the estimators. We study the properties of these estimators using simple random sampling (SRS) and ranked set sampling (RSS) methods. It is found that, SRS and RSS produce approximately unbiased estimators of the population mean. However, the RSS estimators are more efficient than those obtained using SRS based on the same number of measured units for all values of the correlation coefficient.

Keywords: Product estimator, auxiliary variable, simple random sampling, extreme ranked set sampling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
307 Solving SPDEs by a Least Squares Method

Authors: Hassan Manouzi

Abstract:

We present in this paper a useful strategy to solve stochastic partial differential equations (SPDEs) involving stochastic coefficients. Using the Wick-product of higher order and the Wiener-Itˆo chaos expansion, the SPDEs is reformulated as a large system of deterministic partial differential equations. To reduce the computational complexity of this system, we shall use a decomposition-coordination method. To obtain the chaos coefficients in the corresponding deterministic equations, we use a least square formulation. Once this approximation is performed, the statistics of the numerical solution can be easily evaluated.

Keywords: Least squares, Wick product, SPDEs, finite element, Wiener chaos expansion, gradient method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
306 A Completed Adaptive De-mixing Algorithm on Stiefel Manifold for ICA

Authors: Jianwei Wu

Abstract:

Based on the one-bit-matching principle and by turning the de-mixing matrix into an orthogonal matrix via certain normalization, Ma et al proposed a one-bit-matching learning algorithm on the Stiefel manifold for independent component analysis [8]. But this algorithm is not adaptive. In this paper, an algorithm which can extract kurtosis and its sign of each independent source component directly from observation data is firstly introduced.With the algorithm , the one-bit-matching learning algorithm is revised, so that it can make the blind separation on the Stiefel manifold implemented completely in the adaptive mode in the framework of natural gradient.

Keywords: Independent component analysis, kurtosis, Stiefel manifold, super-gaussians or sub-gaussians.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
305 A Fast Object Detection Method with Rotation Invariant Features

Authors: Zilong He, Yuesheng Zhu

Abstract:

Based on the combined shape feature and texture feature, a fast object detection method with rotation invariant features is proposed in this paper. A quick template matching scheme based online learning designed for online applications is also introduced in this paper. The experimental results have shown that the proposed approach has the features of lower computation complexity and higher detection rate, while keeping almost the same performance compared to the HOG-based method, and can be more suitable for run time applications.

Keywords: gradient feature, online learning, rotationinvariance, template feature

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2476
304 Study on the Characteristics of the Measurement System for pH Array Sensors

Authors: Jung-Chuan Chou, Wei-Lun Hsia

Abstract:

A measurement system for pH array sensors is introduced to increase accuracy, and decrease non-ideal effects successfully. An array readout circuit reads eight potentiometric signals at the same time, and obtains an average value. The deviation value or the extreme value is counteracted and the output voltage is a relatively stable value. The errors of measuring pH buffer solutions are decreased obviously with this measurement system, and the non-ideal effects, drift and hysteresis, are lowered to 1.638mV/hr and 1.118mV, respectively. The efficiency and stability are better than single sensor. The whole sensing characteristics are improved.

Keywords: Array sensors, measurement system, non-ideal effects, pH sensor, readout circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
303 A New Time Discontinuous Expanded Mixed Element Method for Convection-dominated Diffusion Equation

Authors: Jinfeng Wang, Yuanhong Bi, Hong Li, Yang Liu, Meng Zhao

Abstract:

In this paper, a new time discontinuous expanded mixed finite element method is proposed and analyzed for two-order convection-dominated diffusion problem. The proofs of the stability of the proposed scheme and the uniqueness of the discrete solution are given. Moreover, the error estimates of the scalar unknown, its gradient and its flux in the L1( ¯ J,L2( )-norm are obtained.

Keywords: Convection-dominated diffusion equation, expanded mixed method, time discontinuous scheme, stability, error estimates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
302 Blind Identification of MA Models Using Cumulants

Authors: Mohamed Boulouird, Moha M'Rabet Hassani

Abstract:

In this paper, many techniques for blind identification of moving average (MA) process are presented. These methods utilize third- and fourth-order cumulants of the noisy observations of the system output. The system is driven by an independent and identically distributed (i.i.d) non-Gaussian sequence that is not observed. Two nonlinear optimization algorithms, namely the Gradient Descent and the Gauss-Newton algorithms are exposed. An algorithm based on the joint-diagonalization of the fourth-order cumulant matrices (FOSI) is also considered, as well as an improved version of the classical C(q, 0, k) algorithm based on the choice of the Best 1-D Slice of fourth-order cumulants. To illustrate the effectiveness of our methods, various simulation examples are presented.

Keywords: Cumulants, Identification, MA models, Parameter estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
301 Analysis of Trend and Variability of Rainfall in the Mid-Mahanadi River Basin of Eastern India

Authors: Rabindra K. Panda, Gurjeet Singh

Abstract:

The major objective of this study was to analyze the trend and variability of rainfall in the middle Mahandi river basin located in eastern India. The trend of variation of extreme rainfall events has predominant effect on agricultural water management and extreme hydrological events such as floods and droughts. Mahanadi river basin is one of the major river basins of India having an area of 1,41,589 km2 and divided into three regions: Upper, middle and delta region. The middle region of Mahanadi river basin has an area of 48,700 km2 and it is mostly dominated by agricultural land, where agriculture is mostly rainfed. The study region has five Agro-climatic zones namely: East and South Eastern Coastal Plain, North Eastern Ghat, Western Undulating Zone, Western Central Table Land and Mid Central Table Land, which were numbered as zones 1 to 5 respectively for convenience in reporting. In the present study, analysis of variability and trends of annual, seasonal, and monthly rainfall was carried out, using the daily rainfall data collected from the Indian Meteorological Department (IMD) for 35 years (1979-2013) for the 5 agro-climatic zones. The long term variability of rainfall was investigated by evaluating the mean, standard deviation and coefficient of variation. The long term trend of rainfall was analyzed using the Mann-Kendall test on monthly, seasonal and annual time scales. It was found that there is a decreasing trend in the rainfall during the winter and pre monsoon seasons for zones 2, 3 and 4; whereas in the monsoon (rainy) season there is an increasing trend for zones 1, 4 and 5 with a level of significance ranging between 90-95%. On the other hand, the mean annual rainfall has an increasing trend at 99% significance level. The estimated seasonality index showed that the rainfall distribution is asymmetric and distributed over 3-4 months period. The study will help to understand the spatio-temporal variation of rainfall and to determine the correlation between the current rainfall trend and climate change scenario of the study region for multifarious use.

Keywords: Eastern India, long-term variability and trends, Mann-Kendall test, seasonality index, spatio-temporal variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
300 Trajectory Estimation and Control of Vehicle using Neuro-Fuzzy Technique

Authors: B. Selma, S. Chouraqui

Abstract:

Nonlinear system identification is becoming an important tool which can be used to improve control performance. This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for controlling a car. The vehicle must follow a predefined path by supervised learning. Backpropagation gradient descent method was performed to train the ANFIS system. The performance of the ANFIS model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS model has potential in controlling the non linear system.

Keywords: Adaptive neuro-fuzzy inference system (ANFIS), Fuzzy logic, neural network, nonlinear system, control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
299 Predicting Shot Making in Basketball Learnt from Adversarial Multiagent Trajectories

Authors: Mark Harmon, Abdolghani Ebrahimi, Patrick Lucey, Diego Klabjan

Abstract:

In this paper, we predict the likelihood of a player making a shot in basketball from multiagent trajectories. To approach this problem, we present a convolutional neural network (CNN) approach where we initially represent the multiagent behavior as an image. To encode the adversarial nature of basketball, we use a multichannel image which we then feed into a CNN. Additionally, to capture the temporal aspect of the trajectories we use “fading.” We find that this approach is superior to a traditional FFN model. By using gradient ascent, we were able to discover what the CNN filters look for during training. Last, we find that a combined FFN+CNN is the best performing network with an error rate of 39%.

Keywords: basketball, computer vision, image processing, convolutional neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705
298 Ensemble Learning with Decision Tree for Remote Sensing Classification

Authors: Mahesh Pal

Abstract:

In recent years, a number of works proposing the combination of multiple classifiers to produce a single classification have been reported in remote sensing literature. The resulting classifier, referred to as an ensemble classifier, is generally found to be more accurate than any of the individual classifiers making up the ensemble. As accuracy is the primary concern, much of the research in the field of land cover classification is focused on improving classification accuracy. This study compares the performance of four ensemble approaches (boosting, bagging, DECORATE and random subspace) with a univariate decision tree as base classifier. Two training datasets, one without ant noise and other with 20 percent noise was used to judge the performance of different ensemble approaches. Results with noise free data set suggest an improvement of about 4% in classification accuracy with all ensemble approaches in comparison to the results provided by univariate decision tree classifier. Highest classification accuracy of 87.43% was achieved by boosted decision tree. A comparison of results with noisy data set suggests that bagging, DECORATE and random subspace approaches works well with this data whereas the performance of boosted decision tree degrades and a classification accuracy of 79.7% is achieved which is even lower than that is achieved (i.e. 80.02%) by using unboosted decision tree classifier.

Keywords: Ensemble learning, decision tree, remote sensingclassification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2583
297 A Fast Cyclic Reduction Algorithm for A Quadratic Matrix Equation Arising from Overdamped Systems

Authors: Ning Dong, Bo Yu

Abstract:

We are concerned with a class of quadratic matrix equations arising from the overdamped mass-spring system. By exploring the structure of coefficient matrices, we propose a fast cyclic reduction algorithm to calculate the extreme solutions of the equation. Numerical experiments show that the proposed algorithm outperforms the original cyclic reduction and the structure-preserving doubling algorithm.

Keywords: Fast algorithm, Cyclic reduction, Overdampedquadratic matrix equation, Structure-preserving doubling algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333
296 Analytical Study and Modeling of Free Vibrations of Functionally Graded Plates Using a Higher Shear Deformation Theory

Authors: A. Meftah, D. Zarga, M. Yahiaoui

Abstract:

In this paper, we have used an analytical method to analyze the vibratory behavior of plates in materials with gradient of properties, simply supported, proposing a refined non polynomial theory. The number of unknown functions involved in this theory is only four, as compared to five in the case of other higher shear deformation theories. The transverse shearing effects are studied according to the thickness of the plate. The motion equations for the FGM plates are obtained by the Hamilton principle application, the solutions are obtained using the Navier method, and then the fundamental frequencies are found, solving an eigenvalue equation system, the results of this analysis are presented and compared to those available in the literature.

Keywords: FGM plates, Navier method, vibratory behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 656
295 Analytic Network Process in Location Selection and Its Application to a Real Life Problem

Authors: Eylem Koç, Hasan Arda Burhan

Abstract:

Location selection presents a crucial decision problem in today’s business world where strategic decision making processes have critical importance. Thus, location selection has strategic importance for companies in boosting their strength regarding competition, increasing corporate performances and efficiency in addition to lowering production and transportation costs. A right choice in location selection has a direct impact on companies’ commercial success. In this study, a store location selection problem of Carglass Turkey which operates in vehicle glass branch is handled. As this problem includes both tangible and intangible criteria, Analytic Network Process (ANP) was accepted as the main methodology. The model consists of control hierarchy and BOCR subnetworks which include clusters of actors, alternatives and criteria. In accordance with the management’s choices, five different locations were selected. In addition to the literature review, a strict cooperation with the actor group was ensured and maintained while determining the criteria and during whole process. Obtained results were presented to the management as a report and its feasibility was confirmed accordingly.

Keywords: Analytic Network Process, BOCR, location selection, multi-actor decision making, multi-criteria decision making, real life problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
294 Airliner-UAV Flight Formation in Climb Regime

Authors: Pavel Zikmund, Robert Popela

Abstract:

Extreme formation is a theoretical concept of selfsustain flight when a big airliner is followed by a small UAV glider flying in the airliner wake vortex. The paper presents results of a climb analysis with the goal to lift the gliding UAV to airliners cruise altitude. Wake vortex models, the UAV drag polar and basic parameters and airliner’s climb profile are introduced at first. Afterwards, flight performance of the UAV in a wake vortex is evaluated by analytical methods. Time history of optimal distance between an airliner and the UAV during a climb is determined. The results are encouraging. Therefore available UAV drag margin for electricity generation is figured out for different vortex models.

Keywords: Flight in formation, self-sustained flight, UAV, wake vortex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
293 Applying Lagrangian Relaxation-Based Algorithm for the Airline Coordinated Flight Scheduling Problems

Authors: Chia-Hung Chen, Shangyao Yan

Abstract:

The solution algorithm, based on Lagrangian relaxation, a sub-gradient method and a heuristic to find the upper bound of the solution, is proposed to solve the coordinated fleet routing and flight scheduling problems. Numerical tests are performed to evaluate the proposed algorithm using real operating data from two Taiwan airlines. The test results indicate that the solution algorithm is a significant improvement over those obtained with CPLEX, consequently they could be useful for allied airlines to solve coordinated fleet routing and flight scheduling problems.

Keywords: Coordinated flight scheduling, multiple commodity network flow problem, Lagrangian relaxation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
292 Feature Level Fusion of Multimodal Images Using Haar Lifting Wavelet Transform

Authors: Sudipta Majumdar, Jayant Bharadwaj

Abstract:

This paper presents feature level image fusion using Haar lifting wavelet transform. Feature fused is edge and boundary information, which is obtained using wavelet transform modulus maxima criteria. Simulation results show the superiority of the result as entropy, gradient, standard deviation are increased for fused image as compared to input images. The proposed methods have the advantages of simplicity of implementation, fast algorithm, perfect reconstruction, and reduced computational complexity. (Computational cost of Haar wavelet is very small as compared to other lifting wavelets.)

Keywords: Lifting wavelet transform, wavelet transform modulus maxima.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2423
291 Effect of Polarization and Coherence of Optical Radiation on Sturgeon Sperm Motility

Authors: Nikolai V. Barulin, Vitaly Yu. Plavskii

Abstract:

This work contains information about the influence low-level optical irradiation on sperm motility of sturgeon fish. On the basis of given and earlier received data the following conclusion has been made. Among the photophysical processes of a resonant and not resonant nature (oriented action of light; action of gradient forces; dipole-dipole interaction; termooptical processes), which are capable to cause the photobiological effects depended on such laserspecific characteristics as polarization and coherency, determining influence belongs to oriented action of light and dipole-dipole interactions among the processes studied in the present work.

Keywords: sturgeon, aquaculture, fish sperm, laser, optical irradiation, sperm motility

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2528
290 FPGA Implement of a Vision Based Lane Departure Warning System

Authors: Yu Ren Lin, Yi Feng Su

Abstract:

Using vision based solution in intelligent vehicle application often needs large memory to handle video stream and image process which increase complexity of hardware and software. In this paper, we present a FPGA implement of a vision based lane departure warning system. By taking frame of videos, the line gradient of line is estimated and the lane marks are found. By analysis the position of lane mark, departure of vehicle will be detected in time. This idea has been implemented in Xilinx Spartan6 FPGA. The lane departure warning system used 39% logic resources and no memory of the device. The average availability is 92.5%. The frame rate is more than 30 frames per second (fps).

Keywords: Lane departure warning system, image, FPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075
289 A Comparative Case Study of the Impact of Square and Yurt-Shape Buildings on Energy Efficiency

Authors: Valeriya Tyo, Serikbolat Yessengabulov

Abstract:

Regions with extreme climate conditions such as Astana city require energy saving measures to increase energy performance of buildings which are responsible for more than 40% of total energy consumption. Identification of optimal building geometry is one of key factors to be considered. Architectural form of a building has impact on space heating and cooling energy use, however the interrelationship between the geometry and resultant energy use is not always readily apparent. This paper presents a comparative case study of two prototypical buildings with compact building shape to assess its impact on energy performance.

Keywords: Building geometry, energy efficiency, heat gain, heat loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531