Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30379
A New Time Discontinuous Expanded Mixed Element Method for Convection-dominated Diffusion Equation

Authors: Yang Liu, Hong Li, Jinfeng Wang, Yuanhong Bi, Meng Zhao

Abstract:

In this paper, a new time discontinuous expanded mixed finite element method is proposed and analyzed for two-order convection-dominated diffusion problem. The proofs of the stability of the proposed scheme and the uniqueness of the discrete solution are given. Moreover, the error estimates of the scalar unknown, its gradient and its flux in the L1( ¯ J,L2( )-norm are obtained.

Keywords: Stability, error estimates, Convection-dominated diffusion equation, expanded mixed method, time discontinuous scheme

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1072912

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 923

References:


[1] J.Jr. Douglas, T.F. Russell. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal. 19: 871-885.
[2] A. Ware. A spectral Lagrange-Galerkin method for convectiondominated diffusion problems, Computer Methods in Applied Mechanics and Engineering 1994, 116: 227-234.
[3] H.Z. Chen. Mixed finite element method for the convection-dominated diffusion problems with small parameter ", Applied Mathematics-A Journal of Chinese Universities, 1998, 13(2): 199-206.
[4] X.R. Chang, M.F. Feng. Nonconforming local projection stabilized method for the non-stationary convection diffusion problem, Mathematica Numerica Sinica, 2011, 33(3): 275-288.
[5] V. John, G. Matthies, F. Schieweck, L. Tobiska. A streamline-diffusion method for nonconforming finite element approximations applied to convection-diffusion problems, Comput. Methods Appl. Mech. Engrg., 1998, 166: 85-97.
[6] V. Thom'ee. Galerkin finite element methods for parabolic problems, New York: Springer-Verlag, 1997.
[7] Y. Liu, H. Li, S. He. Mixed time discontinuous space-time finite element method for convection diffusion equations, Appl. Math. Mech. -Engl. Ed., 2008, 29(12): 1579-1586.
[8] H. Li, Y. Guo. The discontinuous space-time mixed finite element method for fourth order parabolic problems, Acta Scientiarum Naturalium Universitatis NeiMongal, 2006, 37: 20-22.
[9] H. Li, Y. Liu. Mixed discontinuous space-time finite element method for the fourth-order parabolic integro-differential equations, Mathematica Numerica Sinica, 2007, 29(4): 413-420.
[10] S. He, H. Li. The mixed discontinuous space-time finite element method for the fourth order linear parabolic equation with generalized boundary condition, Mathematica Numerica Sinica, 2009, 31(2): 167-178.
[11] T. Arbogast, M.F. Wheeler, I. Yotov. Mixed finite elements for elliptic problems with tensor coefficients as cellcentered finite differences. SIAM Journal on Numerical Analysis, 1997, 34: 828-852.
[12] Z.X. Chen. Expanded mixed element methods for linear second-order elliptic problems(I), RAIRO Model. Math. Anal. Numer., 1998, 32: 479- 499.
[13] Z.X. Chen. Expanded mixed element methods for quasilinear secondorder elliptic problems(II), RAIRO Model. Math. Anal. Numer., 1998,32: 501-420.
[14] Z.X. Chen, Analysis of expanded mixed methods for fourth-order elliptic problems, Numer. Methods Partial Differential Equations, 1997, 13: 483- 503.
[15] Y. Liu, H. Li, Z.C. Wen. Expanded mixed finite element method for a kind of two-order linear parabolic differetial equation, Numer. Math. J. Chinese Univer., 2008, 30(3): 234-249.
[16] C.S. Woodward, C.N. Dawson. Analysis of expanded mixed finite element methods for a non-linear parabolic equation modelling flow into variably saturated porous media, SIAM J. Numer. Anal., 2000, 37: 701-724.
[17] D. Kim, E.J. Park. A posteriori error estimator for expanded mixed hybrid methods, Numer. Methods Partial Differential Equations, 2007, 23: 330-349.
[18] Y.P. Chen, Y.Q. Huang, D.H. Yu. A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations, Int. J. Numer. Meth. Engng 2003, 57: 193-209.
[19] W. Liu, H.X. Rui, H. Guo. A two-grid method with expanded mixed element for nonlinear reaction-diffusion equations, Acta Mathematicae Applicatae Sinica, English Series, 2011, 27(3): 495-502.
[20] H.L. Song, Y.R. Yuan. The expanded upwind-mixed multi-step method for the miscible displacement problem in three dimensions, Applied Mathematics and Computation, 2008, 195: 100-109.
[21] L. Guo, H.Z. Chen. An expanded characteristic-mixed finite element method for a convection-dominated transport problem, Journal of Com-putational Mathematics, 2005, 23(5): 479-490.
[22] H.Z. Chen, H. Wang. An optimal-order error estimate on an HI- - Galerkin mixed method for a nonlinear parabolic equation in porous medium flow, Numer. Methods Partial Differential Equations, 2010, 26: 188-205.
[23] Y. Liu, H. Li. A new mixed finite element method for pseudo-hyperbolic equation, Mathematica Applicata, 2010, 23(1): 150-157.
[24] Y. Liu. Analysis and numerical simulation of nonstandard mixed element methods, PhD thesis, Inner Mongolia University, Hohhot, China, 2011.
[25] A.L. Zhu, Z.W. Jiang, Q. Xu. Expanded mixed covolume method for the linear integro-differential equation of parabolic type, Numer. Math. J. Chinese Univer., 2009, 31(3): 193-205.
[26] H.X. Rui, T.C. Lu An expanded mixed covolume method for elliptic problems NumerMethods Partial Diferential Equations, 2005, 21(1): 8¬23.
[27] Z.W. Jiang, A.Q. Li. Expanded mixed finite element methods for the problem of purely longitudinal motion of a homogeneous bar, J. Comput. Appl. Math., 2011, 235(8): 2157-2169.
[28] H.T. Che, Y.J. Wang, Z.J. Zhou. An optimal error estimates of HI- -Galerkin expanded mixed finite element methods for nonlinear viscoelasticity-type equation, Mathematical Problems in Engineering, Volume 2011, Article ID 570980, 18 pages. doi:10.1155/2011/570980.