Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30184
Octonionic Reformulation of Vector Analysis

Authors: Bhupendra C. S. Chauhan, P. S. Bisht, O. P. S. Negi

Abstract:

According to celebrated Hurwitz theorem, there exists four division algebras consisting of R (real numbers), C (complex numbers), H (quaternions) and O (octonions). Keeping in view the utility of octonion variable we have tried to extend the three dimensional vector analysis to seven dimensional one. Starting with the scalar and vector product in seven dimensions, we have redefined the gradient, divergence and curl in seven dimension. It is shown that the identity n(n - 1)(n - 3)(n - 7) = 0 is satisfied only for 0, 1, 3 and 7 dimensional vectors. We have tried to write all the vector inequalities and formulas in terms of seven dimensions and it is shown that same formulas loose their meaning in seven dimensions due to non-associativity of octonions. The vector formulas are retained only if we put certain restrictions on octonions and split octonions.

Keywords: Octonions, Vector Space and seven dimensions

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1075980

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 847

References:


[1] P. Jordan, J Neuman, Von and E. P. Wigner, Ann. Math., 35 , (1934), 29.
[2] A. Cayley, Philos. Mag. 26 , (1845), 208; R. P. Graves, "Life of Sir William Rowan Hamilton", 3 volumes, Arno Press, New York, 1975; J. C. Baez, Bull. Amer. Math. Soc., 39, (2001), 145; J. H. Conway, "On Quaternions and Octonions: Their Geometry, Arithmetic,and Symmetry," A K Peters Ltd, Massachusetts, 2003.
[3] L. E. Dickson, Ann. Math., 20, (1919), 155; W. R. Hamilton, "Elements of quaternions", Chelsea Publications Co., NY, (1969); P.G.Tait, "An elementary Treatise on Quaternions", Oxford Univ. Press (1875).
[4] A. Pais, Phys. Rev. Lett., 7, (1961), 291.
[5] R. Penny, Am. J. Phys., 36, (1968), 871; Nuovo Cimento, B3, (1971), 95.
[6] K. Imaeda, H. Tachibana , M. Imaeda and S.Ohta, IL Nuovo Cimento, B100, (1987), 53; B105, (1990) 1203; Bull. Okayama Univ. Sci., A24 , (1989) 181; K. Imaeda and H.Tachibana, Il Nuovo Cimento, ; B104 (1989) 91; Bull. Okayama Univ. Sci., A19, (1984) , 93; H. Tachibana; Ph.D.Thesis, Okayama Univ. Science (1990).
[7] G. C. Joshi, Lett. Nuovo Cimento, 44, (1985), 449; A. J. Davis and G. C. Joshi, J. Math. Phys., 27, (1986), 3036; R. Foot and G. C. Joshi, Int. J. Theor. Phys., 28 , (1989), 1449 ; Phys. Lett., B199, (1987), 203.
[8] A. Gamba, J. Math. Phys., 8, (1967), 775; Il Nuovo Cimento, A111 , (1998) 293; M. Gogberashvili, J. Phys. A: Math.Gen., 39 , ( 2006) 7099.
[9] G. M. Dixon, "Division Algebras: Octonions, Quaternions, Complex Numbers, and the Algebraic Design of Physics", (Kluwer, 1994).
[10] S. Okubo, "Introduction to Octonion and Other Non-Associative Algebras in Physics", Montreal Memorial Lecture Series in Mathematical Physics, 2, Cambridge University Press, 1995; C.H. Barton and A. Sudbery, "MAGIC SQUARES OF LIE ALGEBRAS" arXiv:math.RA/0001083.
[11] Z. K. Silagadze, J. Phys. A: Math. Gen., 35 , (2002) 4949; M. Rost, Documenta Mathematica, 1 , (1996) 209; J. A. Nieto and L. N. Alejo- Armenta, Int. J. Mod. Phys., A16 , (2001) 4207.
[12] P. S. Bisht and O. P. S. Negi, Ind. J. P. Appl. Phys., 31 , 292 (1993); 32 , 183 (1994); Int. J. Theor. Phys., 47 , 1497 (2008); P. S. Bisht, Shalini Dangwal and O. P. S. Negi, Int. J. Theor. Phys., 47 , 2297 (2008); P. S. Bisht, B. Pandey and O. P. S. Negi, FIZIKA (Zagreb), B17 , 405 (2008); P. S. Bisht and O.P.S.Negi, Pramana (India), 73 , 105 (2009); B. C. Chanyal, P. S. Bisht and O. P. S. Negi, Int. J. Theor. Phys., 49 , 1333 (2010).