Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33092
Sparsity-Aware Affine Projection Algorithm for System Identification
Authors: Young-Seok Choi
Abstract:
This work presents a new type of the affine projection (AP) algorithms which incorporate the sparsity condition of a system. To exploit the sparsity of the system, a weighted l1-norm regularization is imposed on the cost function of the AP algorithm. Minimizing the cost function with a subgradient calculus and choosing two distinct weighting for l1-norm, two stochastic gradient based sparsity regularized AP (SR-AP) algorithms are developed. Experimental results exhibit that the SR-AP algorithms outperform the typical AP counterparts for identifying sparse systems.Keywords: System identification, adaptive filter, affine projection, sparsity, sparse system.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1339165
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554References:
[1] S. Haykin, Adaptive filter theory, Upper Saddle River, NJ: Prentice Hall, 2002.
[2] A. H. Sayed, Fundamentals of adaptive filtering, New York: Wiley, 2003.
[3] K. Ozeki and T. Umeda, “An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties,” Electro. Commun. Jpn., vol. 67-A, no. 5, pp. 19–27, 1984.
[4] O. Hoshuyama, R. A. Goubran, and A. Sugiyama, “A generalized proportionate variable step-size algorithm for fast changing acoustic environments,” in Proc. Int. Conf. on Acoustics, Speech, and Signal Process. (ICASSP 2004), pp. IV-161–IV-164, 2004
[5] C. Paleologu, S. Ciochina, and J. Benesty, “An efficient proportionate affine projection algorithm for echo cancellation,” IEEE Signal Process. Lett., vol. 17, no. 29, pp. 165–168, Feb. 2010.
[6] Y. Chen, Y. Gu, and A. O. Hero, “Sparse LMS for system identification,” in Proc. Int. Conf. on Acoustics, Speech, and Signal Process. (ICASSP 2009), pp. 3125–3128, 2009.
[7] Y. Gu, J. Jin, and S. Mei, “l0 norm constraint LMS algorithm for sparse system identification,” IEEE Signal Process. Lett., vol. 16, no. 9, pp. 774–777, Sep. 2009.
[8] Y.-S. Choi and W.-J. Song, “Noise constrained data-reusing adaptive filtering algorithms for system identification,” IEICE Trans. Fundamentals., vol. E.95-A, no. 6, pp. 1084–1087, June. 2012.
[9] D. Bertsekas, A. Nedic, and A. Ozdaglar, Convex analysis and optimization, Athena Scientific, Cambridge, MA USA, 2003.
[10] E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighting l0 Minimization,” J. Fourier Anal. Appl., vol. 14, pp. 877–905, 2008.