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Predicting Shot Making in Basketball Learnt from
Adversarial Multiagent Trajectories

Mark Harmon, Abdolghani Ebrahimi, Patrick Lucey, and Diego Klabjan

Abstract—In this paper, we predict the likelihood of a player
making a shot in basketball from multiagent trajectories. To approach
this problem, we present a convolutional neural network (CNN)
approach where we initially represent the multiagent behavior as
an image. To encode the adversarial nature of basketball, we use
a multichannel image which we then feed into a CNN. Additionally,
to capture the temporal aspect of the trajectories we use “fading.”
We find that this approach is superior to a traditional FFN model. By
using gradient ascent, we were able to discover what the CNN filters
look for during training. Last, we find that a combined FFN+CNN
is the best performing network with an error rate of 39%.

Keywords—basketball, computer vision, image processing, convo-
lutional neural network.

I. INTRODUCTION

Neural networks have been successfully implemented in a
plethora of prediction tasks ranging from speech interpretation
to facial recognition. Because of ground-breaking work in
optimization techniques (such as batch normalization [1] )
and model architecture (convolutional, deep belief, and LSTM
networks), it is now tractable to use deep neural networks to
effectively learn a better feature representation compared to
hand-crafted methods.

One area where such methods have not been utilized is the
space of adversarial multiagent systems (for example, multiple
independent players in competition), specifically when the
multiagent behavior comes in the form of trajectories. There
are two reasons for this: i) procuring large volumes of data
where deep methods are effective is difficult to obtain, and
ii) forming an initial representation of the raw trajectories so
that deep neural networks are effective is challenging. In this
paper, we explore the effectiveness of deep neural networks
on a large volume of basketball tracking data, which contains
the x, y locations of multiple agents (players) in an adversarial
domain (game).

To thoroughly explore this problem, we focus on the fol-
lowing task: “given the trajectories of the players and ball
in the previous five seconds, can we accurately predict the
likelihood that a player with position/role X will make the
shot?” For this paper, player role refers to a more fluid position

M. Harmon is with Tempus Labs, Chicago, IL, USA; e-mail: md-
harmo13@gmail.com.

A. Ebrahimi is with the Department of Industrial Engineering and
Management Sciences, Northwestern University, Evanston, IL, 60208 USA;
e-mail: ebrahimi@u.northwestern.edu; phone: 312-998-5437.

D. Klabjan is a professor at the Department of Industrial Engineering and
Management Sciences, Northwestern University, Evanston, IL, 60208 USA;
e-mail: d-klabjan@northwestern.edu.

P. Lucey is with STATS Perform, Chicago, IL, USA; e-mail:
patrick.lucey@statsperform.com.

of a player, which was explored by [2]. For example, a player
may not be in the point guard position during the entire play.
Since we plan to utilize an image representation for player
trajectories, we use a convolutional neural network (CNN),
which is widely considered a powerful method for image
classification problems.

In this study, we treat each player as a generic player,
i.e. we are not using player identities. By modeling generic
players rather than individuals, we can more easily quantify the
differences between an individual player and a generic player.
Consider, for example, a rookie (which clearly has limited
historical data). After a few games, a coach can compare his
shooting performance against the performance of a generic
player, which can be obtained by our model. Our model offers
such comparisons at a very fine granular level of play. The
coach can then guide the player to improvements. The same
argument is applicable in other cases such as a player getting
more play-time (the model allows comparison against generic
players in addition to his past performance, which clearly
does not need our model). To obtain these values, we want
to identify shooting for each generic position (point guard,
shooting guard, center, power forward, and small forward).
Since we classify whether the shot will be made for a single
offensive position, every offensive player corresponds to either
the class of making a shot or missing a shot. Therefore, our
classification problem consists of ten classes.

Our work contains three main contributions. First, we
represent trajectories for the offense, ball, and defense as
an eleven channel image. Each channel corresponds to the
five offensive and defensive players, as well as the ball. To
encode the direction of the trajectories, we fade the paths of
the ball and players. In our case, an instance is a possession
that results in a shot attempt. Second, we apply a combined
convolutional neural network (CNN) and feed forward network
(FFN) model on an adversarial multiagent trajectory based
prediction problem. Third, we gain insight into the nature
of shot positions and the importance of certain features in
predicting whether a shot will result in a basket.

Our results show that it is possible to solve this problem
with relative significance. The best performing model, the
CNN+FFN model, obtains an error rate of 39%. In addition,
it can accurately create heat maps by shot location for each
player role. Features which are un-surprisingly important are
the number of defenders around the shooter and location of
the ball at the time of the shot. In addition, we found that our
image-based model performs just as well as a feed-forward
technique that required us to build nearly 200 features.
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II. LITERATURE REVIEW

With the rise of deep neural networks, sports prediction
experts have new tools for analyzing players, match-ups,
and team strategy in these adversarial multiagent systems.
Trajectory data was not available at the time, so much previous
work on basketball data utilizing the power of neural networks
have used statistical features such as: the number of games
won and the number of points scored. For example, [3] use
statistics from 620 NBA games and a neural network to predict
the winner of a game. Another work in predicting game
outcomes is [4]. On the other hand, [5] in his blog discusses
predicting basketball shots based upon the type of shot (layups
versus free throws and three-point shots) and where the ball
was shot from. In a recent paper, [6] used 12 important features
in predicting the shot success using neural networks. In other
sports related papers, [7] use a neural network to predict
winners of soccer games in the 2006 World Cup. Also, [8]
predict goal events in video footage of soccer games.

With trajectory data becoming available, some more recent
works in the area utilize that in their basketball game analysis.
For instance, [9] uses the data set provided by STATS LLC
to explore how to get an open shot in basketball using
trajectory data to find that the number of times defensive
players swapped roles/positions was predictive of scoring.
However, they explore open versus pressured shots (rather than
shot making prediction), do not represent the data as an image,
and do not implement neural networks for their findings. Other
trajectory work includes using Conditional Random Fields
to predict ball ownership from only player positions [10],
as well as predicting the next action of the ball owner via
pass, shot, or dribble [11]. Non-negative matrix factorization
is used by [12] to identify different types of shooters using
trajectory data. Because of a lack of defensive statistics in the
sport, studies [13, 14] create counterpoints (defensive points)
to better quantify defensive plays. The work by [15] makes
use of trajectory data by segmenting a game of basketball into
phases (offense, defense, and time-outs) to then analyze team
behavior during these phases.

The work [16] use trajectory data representations and re-
current neural networks (rather than CNN’s) to predict plays.
Because of the nature of our problem, predicting shot making
at the time of the shot, there is not an obvious choice of
labeling to use for a recurrent network. They also fade the
trajectories as the players move through time. Like us, they
create images of the trajectory data of the players on the
court. Our images differ in that we train our network on
the image of a five second play and entire possession, while
their training set is based on individual frames represented as
individual positions rather than full trajectories. They use the
standard RGB channels, which we found is not as effective as
mapping eleven channels to player roles and the ball for our
proposed classification problem. Also, the images they create
solely concentrate on the offense and do not include defensive
positions.

In addition, work by [17] explores shots made in basketball
using the same STATS data using a multiresolution stochastic
process. Our work focuses on a representation capturing

the average adversarial multiagent behavior, compared to the
approach of [17], which focuses on individual players. In
addition, while they concentrate on a Markov model that
transitions between a coarse and fine data representation, our
goal is to represent the fine-grained data for a deep learning
model. Our work focuses on shot prediction for the average
player in the NBA at the time of the shot while their work
formulates a way to calculate estimated point value based
upon specific player identity without reporting predictions
for individual plays. Their estimated point value includes the
probability of making a shot; however, this probability is based
on individual characteristics of a player prior to taking the
shot which is different from our goal of considering generic
players. We do not see an easy way to modify their models to
provide answers based on our setting. In summary, there is no
readily available numerical comparison of the two models that
would provide answers for shot making predictions of generic
players.

The final model that we implement, the combined network,
utilizes both image and other statistical features. There is work
that utilizes both image and text data with a combined model.
Recently, [18, 19, 20, 21, 22], all explore the idea of captioning
images, which requires the use of generative models for text
and a model for recognizing images. However, to the best of
our knowledge, we have not seen visual data that incorporates
fading an entire trajectory for use in a CNN.

III. DATA

The dataset was collected via SportsVU by STATS LLC.
SportsVU is a tracking system that uses 6 cameras to track
all player locations (including referees and the ball). The data
used in this study was from the 2012-2013 NBA season and
includes thirteen teams, which have approximately forty games
each. Each game consists of at least four quarters, with a few
containing overtime periods.

The SportVU system records the positions of the players,
ball, and referees 25 times per second. At each recorded frame,
the data contains the game time, the absolute time, player and
team anonymized identification numbers, the location of all
players given as (x, y) coordinates, the role of the player,
and some event data (i.e. passes, shots made/missed, etc.). It
also contains referee positions, which are unimportant for this
study, and the three-dimensional ball location. Table I shows
a sample (with player identities masked) of a single frame of
data.

The sample detailed above shows a single frame snapshot
from a game where team 1 is playing team 2. ”Game Time”
refers to time left in the quarter in seconds while ”Real Time”
is the actual time of the day outside of the game. The next
column is the team labels where the ball and referees are
denoted with a ”-1” and ”-2,” respectively. Each player has
an ID along with the ball and each referee. Next are the
coordinates of all players, referees, and the ball along with the
role/position of the player and special event codes for passes,
shots, fouls, and rebounds.

This dataset is unique in that before SportVU, there was
very little data available of player movements on the court and
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TABLE I: Trajectory Data Sample

Game Time Real Time Team Player X Y Z Role Event
693 514200 1 101 21.5 33.6 0.0 1 0
693 514200 1 102 24.1 14.1 0.0 2 1
693 514200 1 103 5.4 9.6 0.0 3 0
693 514200 1 104 3.9 45.6 0.0 4 0
693 514200 1 105 10.4 3.5 0.0 5 0
693 514200 2 201 13.6 31.6 0.0 1 0
693 514200 2 202 20.4 15.4 0.0 2 0
693 514200 2 203 7.7 13.3 0.0 3 0
693 514200 2 204 6.0 38.6 0.0 4 0
693 514200 2 205 13.9 13.2 0.0 5 0
693 514200 -1 -1 25.1 14.0 3.4 0 0
693 514200 -2 1 16.9 49.2 0.0 0 0
693 514200 -2 3 78.9 0.5 0.0 0 0
693 514200 -2 2 26.0 3.1 0.0 0 0

none known that provides frame-by-frame player locations.
Since it is likely that most events in basketball can be
determined by the movements of the players and the ball,
having the trajectory data along with the event data should
provide a powerful mixture of data types for prediction tasks.

There are a few ways to extract typical shot plays from the
raw data. One is to choose a flat amount of time for a shooting
possession. In our case we choose to include the final five
seconds of a typical possession. To obtain clean plays, those
that lasted less than 5 seconds due to possession changes and
those in which multiple shots were taken were thrown out.
After throwing out these cases, we were left with 75,000 five
second plays.

The other way of obtaining play data would be to take the
entire possession. Thus, rather than having plays be limited
to five seconds, possessions can be much longer or shorter.
Since the raw data does not contain labels for possession,
we had to do this ourselves. To identify possession, we
calculate the distance between the ball and each of the players.
The player closest to the ball would be deemed the ball
possessor. Since this approach may break during passes and
other events during a game, we end possession when the ball
is closer to the defensive team for 12 frames (roughly 0.5
seconds). The procedure yields 72,000 possession examples.
We found that using an entire possession resulted in lower
prediction accuracy probably due to additional intricacies of
court positions. Therefore, we use five second possessions for
the remainder of this study.

Although each player has an assigned role, players change
positions with respect to each other, which effectively changes
their role during regular play [2]. Since our classification
problem is dependent upon a player’s position, a player’s role
must be chosen for each five second play. We ultimately decide
to assign a player the role that they occupy at the beginning
of the play. Since we want to explore how a player’s actions
resulted in favorable/unfavorable shooting position, we do not
assign role based upon the end of the five second play.

IV. IMAGE-BASED REPRESENTATION

In terms of applying deep neural networks to multiagent
trajectories, we first form an initial representation. A natural
choice for representing these trajectories is in the form of an
image. Given that the basketball court is 50x94 feet, we can
form a 50x94 pixel image. In terms of the type of image we
use, there are multiple choices: i) grayscale (where we identify

that a player was a specific location by making that pixel
location 1), ii) RGB (we can represent the offense trajectories
in the red channel, the defense in the blue channel and the ball
in the green channel, and the occurrence of a player/ball at that
pixel location can be representing by a 1), and iii) 11-channel
image (where each agent has their own separate channel) with
each position represented by a 1. Examples of the grayscale
and RGB approach are shown in Figure 1.

The 11-channel approach requires some type of alignment.
In this paper, we apply the ‘role-representation’ which was first
deployed by [2]. The intuition behind this approach is that for
each trajectory, the role of that player is known (i.e., point-
guard, shooting guard, center, power-forward, small-forward).
This is found by aligning to a pre-defined template which is
learnt in the training phase.

1 (a) 1 (b)

Fig. 1: 1 (a) grayscale and 1 (b) RGB image of the same
trajectory of all 10 players plus the ball. Each red/blue
line corresponds to an offensive/defensive player, and green
indicates the ball trajectory.

Figure 1 shows examples of the methods we use to represent
our data for our CNN. The grayscale image, which appears
on the left, can accurately depict the various trajectories in
our system. However, because the image is grayscale, the
CNN will treat each trajectory the same. Since we have an
adversarial multiagent system in which defensive and offensive
behavior in trajectory data can lead to different conclusions,
grayscale is not the best option for representation. Therefore,
to increase the distinction between our agents, we represent the
trajectories with an RGB scale. We choose red to be offense,
blue to be defense, and green to be the ball. This approach
takes advantage of multiple channels to allow the model to
better distinguish our adversarial agents. Although the ball
may be part of the offensive agent structure, we decide to
place the ball in a channel by itself since the ball is the
most important agent. This approach, although better than
the gray images, lacks in distinguishing player roles. Since
we classify our made and missed shots along with the role
of the player that shoots the ball, a CNN will have trouble
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distinguishing the different roles on the court. Therefore, for
our final representation, we decide to separate all agents into
their own channel so that each role is properly distinguished
by their own channel.

The above ideas nearly create ideal images; however, it does
not include time during a play. Since each trajectory is of
equal brightness from beginning to end, it may be difficult to
identify where the ball was shot from and player locations at
the end of the play. Therefore, we implement a fading variable
at each time frame. We subtract a parameterized amount from
each channel of the image to create a faded image as seen
in Figures 1 and 2. Thus, it becomes trivial to distinguish the
end of the possession from the beginning and leads to better
model performance.

2 (a) 2 (b)

Fig. 2: 2 (a) depicts a five second play with all 10 players while
2 (b) is of an entire possession. As expected of five second
plays, most of the trajectories remain near the basket located
at the bottom of the image. Each red/blue line corresponds
to a offensive/defensive player with green indicating the ball
trajectory.

V. MODELS

To fully utilize the power of this dataset, we implement a
variety of networks for our prediction task. For our base model,
we use logistic regression with 197 hand-crafted features
detailed later. To improve upon this basic model, we use
a multilayer FFN with the same features and utilize batch
normalization during training. Because of the nature of these
two models, we could only include the positions of the players
at the time of the shot. Therefore, we craft images to include
the position of the players throughout the possession. We then
apply a CNN to these new image features. Finally, we create
a combined model that adopts both images and the original
FFN features for training.

A. Logistic Regression and Feed Forward Network

For the baseline models, features based upon basketball
knowledge were crafted. The list of features includes:

• Player and ball positions at the time of the shot
• Game time and quarter time left on the clock
• Player speeds over five seconds
• Speed of the ball
• Distances and angles (with respect to the hoop) between

players
• Number of defenders in front of the shooter (300 angle

of the shooter) and within six feet based upon the angles
calculated between players

• Ball possession time for each offensive player
• Number of all individuals near the shooter (including

teammates)
Logistic regression and FFN both use the same calculated

features. In addition, only the CNN does not incorporate the
above features.

A deep neural network is a machine learning model that
consists of several layers of linear combinations of weights,
inputs, and activation functions. The number of weights θ,
layers L, and activation functions a are specified before
training with data X . The model outputs probabilities f and
the error is calculated generally with the Kullback-Leibler
divergence, a.k.a log loss function KL(y||f), against the true
values y. A deep neural network generally refers to a neural
network that is at least three layers deep. The depth (number
of layers) of network versus the breadth (number of neurons)
allows it to learn more complex features of the dataset. The
following is a mathematical model of a deep neural network:

z0 = X inputs of the model,

z�i (X; θ) = a�
( K∑

k=1

z�−1
k θ�−1

ik

)
for neuron i in layer �

and K neurons at layer �− 1,

fi(X; θ) =
ez

L
i θL

i
T

∑
m ez

L
mθL

i
T softmax function for probability

of each class i,

with the optimization function:

min
θ

E(X,Y )KL(Y ||f(X, ; θ)) = E(X,Y )

∑
i

yi log fi(X; θ)

(1)

B. Convolutional Neural Network

A CNN is similar to a Feed Forward Network, except that
instead of learning individual weights per neuron, the model
learns many filters (which consist of weights) that are con-
volved with the incoming data and reduced in size by a pooling
layer. Like FFN’s, they consist of multiple layers. For our
model, we use a CNN that consists of three full convolutional
layers, each with 32 3x3 filters and a max-pooling layer with a
pool-size of 2x2 following each convolutional layer. After the
final pooling layer, there is a fully connected layer with 400
neurons. The network ends with an output layer consisting of
a softmax function and ten neurons. In addition, we use the
ReLU function for our nonlinearity at each convolutional layer
and the fully connected layer. We also implement AlexNet,
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Network-in-Network, and Residual Networks, but we did not
garner significant improvement from any of these models.

C. CNN + FFN Network

The final network implemented is a combination of both the
feed forward and convolutional networks. For this model, we
use both the feed forward features and the fading trajectory
images from the CNN. The idea behind the combined network
is to have the model identify trajectory patterns in the images
along with statistics that are known to be important for a
typical basketball game.

The CNN and FFN parts of the combined network have the
exact same architecture as the stand-alone versions of each
model. The final layers just before the softmax layer of each
stand-alone network are then fully-connected to a feed-forward
layer that consists of 1,000 neurons. This layer is then fed into
the final softmax layer to give predictions. After performing
experiments and measuring log loss, we found that adding
layers to this final network or adding additional neurons to
this layer did not improve our final results.

VI. RESULTS

All the models (FFN, CNN, and CNN+FFN) use the typical
log loss function as the cost function with a softmax function at
the output layer. The weights are initialized with a general rule
of ±√

1/n where n is the number of incoming units into the
layer. For training, we implement the batch stochastic gradient
method utilizing batch normalization. Batch normalization is
used on the convolutional and feed forward layers of the
model. In addition, we train the models on a NVIDIA Titan
X using Theano.

For the CNN and CNN+FFN networks we utilize our eleven
channel images with fading. We randomly split our data into
train, validation, and test sets. The training set contains 52,000
samples while the validation and test sets contain 10,000
samples each. All experiments are completed using the same
data split.

To justify our image representation, we first evaluate our
model with each of the following image sets: one (grey)
channel, three (RGB) channels, and eleven channels (for
each player and the ball). These sets are all assessed on the
previously mentioned CNN architecture consisting of three
convolutional layers. Figure 3 displays the log loss and error
rate on both validation and test sets for each of our represen-
tations. The log loss and error rate show a dramatic difference
in accuracy based upon each image representation. By both
accuracy and loss metrics, using eleven channels is the best
representation. The eleven channel representation minimizes
the overlapping trajectory issue that hinders the one and three
channel methods. Thus, with eleven channels, the CNN can
more easily capture more relevant on-the-court features such
as ball possession and passes.

In addition to the image representations of Figure 2, we
made each trajectory a different color in RGB space, varying
the strength of the fading effect, and including extra channels
of heat maps depicting the final ball position (none of which

outperformed the eleven channel method). Successfully rep-
resenting trajectory data in sport that outperforms traditional
metrics is a nontrivial problem, but is not further explored in
this study.

Fig. 3: Log loss and accuracy for three image representations
(smaller is better). The eleven channel method is superior.

Next, we evaluate both the accuracy and loss values for
our FFN, CNN, and combined CNN+FFN models. A quick
observation of the metrics represented in Figure 4 shows that
the final combined model is the best predictor. While the
performance of the eleven channel images is an improvement
over our other proposed image representations, there remains
potential progress since our FFN has only slightly lower
classification accuracy on the test set.

Fig. 4: Log loss and accuracy for FFN, CNN, and combined
CNN+FFN. The combined model is the best classifier by both
metrics.

The remaining analyses are based on the combined
CNN+FFN model. In addition to assessing the accuracy of
our model, we explore a basic heat map of basketball shots
based upon the raw data. At the very least, we expect that
our complete model should be similar to a heat map created
via raw data. We make the heat map by taking a count of
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shots made against shots missed within a square foot of the
basketball court. Since our classification model gives proba-
bilities of making a shot (rather than a binary variable), we
take the maximum probability to create a heat map equivalent
to the raw data map. From the heat map comparison, we aim
to further understand how our model is making predictions.

5 (a)

5 (b)

Fig. 5: Heat map from 5 (a) model data 5 (b) raw data. The hot
areas depict locations in which players are much more likely
to take a shot.

In the raw data heat map, Figure 5, we note that the best
probability of making a shot lies on top of the basket. As
we get farther back, the probability decreases with two less
probable zones (lighter zones separated by a thin green strip
of higher probability): one right outside the paint and another
just inside the three-point line. This means that our model
is placing too much importance on the shooter being near
the hoop. The model also predicts a larger high value area
surrounding the basket, which extends further into the paint
of the court. However, the dead zones in the model heat map
are much larger. In addition, the model over predicts near
the basket while under predicting outside this area. Curiously,

6 (a) 6 (b)

6 (c) 6 (d)

6 (e) 6 (f)

6 (g) 6 (h)g

6 (i) 6 (j)

Fig. 6: Heat maps for Role 1 (6(a) model and 6(b) raw data),
Role 2 (6(c) model and 6(d) raw data), Role 3 (6(e) model
and 6(f) raw data), Role 4 (6(g) mode and 6(h) raw data) and
Role 5 (6(i) model and 6(j) raw data). The model matches best
with the center (6 (e) and 6 (f)) and power forward (6 (c) and
6 (d)), but provides a larger coverage in all other positions.

there are a few areas that have higher probability outside of
the paint. To further explore our results, we create heat maps
solely based on the role of the player (to break down scoring
chances by agent). As before, each role represents an offensive
player. In Figure 6 we present a few player roles and their
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7 (a) All roles 7 (b) Role 1 7 (c) Role 2

7 (d) Role 3 7 (e) Role 4 7 (f) Role 5

Fig. 7: From left to right and top to bottom: 7 (a) All roles. 7 (b) Role 1. 7 (c) Role 2. 7 (d) Role 3. 7 (e) Role 4. 7 (f) Role
5. Probabilities of shot prediction by role. Note that role 3 (the center) has the largest overall probability of making a shot.

representative heat maps. Role 3 must be the center position
from their shot selection and Role 5 is the left guard. Note that
the model predicts a much smaller area of midrange scoring
probability than from the raw data for Role 3. The model
heat map for Role 3 strictly covers the paint, while the raw
data has significantly higher shot probabilities outside of the
paint. Roles 1, 4, and 5 show similar behavior in the model
prediction. These maps are very heavy-handed with respect
to under the basket shots with extremely small probabilities
outside of the paint. The one exception is Role 2, which the
model predicts has a much more likely chance of scoring
outside of the paint. We observe from these heat maps that
Role 2 is the reason the heat map for all in Figure 5 exhibits
an arc of higher probability outside the hoop. Therefore, for
Role 2, our model is learning more than simply distance from
the hoop for prediction in this case. The raw data shows that
shots outside the hoop are just as likely from any player, but
our model argues that Role 2 is more likely to make a shot
when shooting further away from the hoop.

The probabilities that the combined model predicts for each
shot may also provide useful insight into the game and our
model’s interpretation of high versus low value shots. We
create these histograms by finding which examples the model
gives the highest probability as a shot made or missed by
player with role x. We then group these examples together, and
the probability of making a shot is reported in the histogram. In
the histograms depicted in Figure 7 we see that most of shots
have a low probability. This agrees with common basketball

knowledge because many of a guard’s shots are beyond the
paint. On the other hand, a center remains primarily under
the basket and in the paint. Therefore, many of their shots
are much more likely. Watching a game live, a center getting
a clean pass right under the basket often results in a made
shot. In addition, most roles tend to follow the probability
pattern of Role 1 except for Role 3 (the center), which has
a wider distribution and higher average probability of making
a shot. In addition, Role 5 tends to have a better ratio of
high probability shots to low compared to Roles 1,2, and 4. A
brief glance at NBA statistics agrees with this interpretation
as the players with the highest shooting percentage (barring
free throws) tend to be centers.

When viewing the histograms more carefully, there are
additional role dependent insights. For example, Role 1 has
the lowest probabilities for shots made compared to all other
roles. Although the general shape is the same as for Role
2, the predictions are shifted significantly to the left. We
also note that overall, most of the shots fall into the 45%
category of shot being made, which is aligned with general
basketball knowledge. Since these histograms are predictions
of the average basketball player in each role, the takeaway
message is that unless you have an ace shooter (Lebron James
or Steph Curry), a team should focus on ball movement to
give the center an open shot rather than relying on outside
shooters.

We also exhibit Figure 8 to provide additional visual context
for our model probabilities. These figures depict the final
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Fig. 8: Locations of offensive (O) and defensive (D) players on the court at the time of the shot displaying the model’s
prediction probabilities. Most of the predictions are reasonable when considering shot location and defensive positioning.

positions of all players on the court at the time of the shot.
We can assess how “open” the shot maker is at the time of
the shot and the relative position of both the offensive and
defensive players. The offensive players are blue, defensive
players red, and the ball is green. Each offensive and defensive
player has the letter “O” and “D” respectively followed by a
number signifying the role of that player at that time. There are
times when the model makes some questionable predictions.
For example, the three-point shot that is exhibited in the top
right of Figure 8 with a 0.610 probability is much too high.
Unguarded, we do not expect three-point shots to be made
more than 50% of the time. Thankfully, these examples are
very rare in our model. For the most part, three-point shots
are rated extremely low by the model garnering probabilities
of less than 20%.

In addition to three-point shots having a generally low
probability, shots that are well-covered by defenders have a
much lower probability of success. This is an unsurprising
well-known result, but it does add validity to our model. In
addition, shots that are open and close to the basket are heavily
favored in our model. For example, in the bottom right picture,
Role 3 has a very good chance of making a wide-open shot
with the defense well out of position.

As noted in Figure 4, the FFN classifies with nearly the
same accuracy as the CNN; however, the combined CNN+FFN
model is the best classifier. Therefore, the CNN must learn
features that elude the FFN.

We next explore our CNN model by creating images that
result in maximum activation in the CNN ( [23]). The goal

of creating these images is to find the features in our images
that the CNN model learns. The process is similar to a reverse
of training a neural network. First, we take an already trained
CNN and a randomly created image. Then without changing
the weights θ∗ of the CNN that feed into filter i at layer �,
we use gradient ascent with respect to the image x that yield
maximum value to activation a�i . To make the image from the
filter we solve: x∗ = argmaxx a

�
i(θ

∗, x).
In Figure 9, we present four images from four distinct filters

in our CNN model (several other filters result in white noise).
The images in the figure are an RGB representation of the
eleven channel images we create with the maximum activation
method. Since we know which agent is represented by each
channel, we let green, red, and blue represent the ball, offense,
and defense, respectively. We implement this transformation
into the RGB space for qualitative and quantitative assess-
ments when compared to historical data of the ball, offense,
and defense.

The first and third images of Figure 9 are nearly identical;
however, while the first image displays primarily offensive
areas, the third image presents the same areas but with ball
(green) information as well. The second image shows that the
filter is attempting to identify ball (green) activity, and the
fourth image is a filter identifying defensive (blue) activity.
We did not expect filters to look for offensive, defensive, or
ball activity near the top of the court (away from the hoop)
since we ensure that the offense always shoots towards the
bottom of the image.

Figure 10 is a historical representation of the locations of
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9 (a) 9 (b) 9 (c) 9 (d)

Fig. 9: 9 (a) Filter 6 in convolution layer 3 of the offensive players 9 (b) Filter 20 in convolution layer 1 of the ball 9 (c)
Filter 6 in convolution layer 1 of the offense and ball 9 (d) Filter 25 in convolution layer 1 of the defense. Images that yield
maximum activation using a trained CNN.

all offensive (including the ball) and defensive agent locations
at the time of the shot for our five second plays. For ease
of comparison, we retain our qualitative RGB representation
of green, red, and blue representing the ball, offense, and
defense, respectively. The historical images in Figure 10 show
all activity is near the hoop while the filter images in Figure 9
show additional activity far away from the hoop. To compare
Figures 9 and 10 quantitatively, we utilize the SSIM, a.k.a. the
structural similarity index measure ( [24]). If a noisy version of
an image is compared to the original, the SSIM can correctly
identify that the images are the same. SSIM ranges from −1
to 1, where a perfect score of 1 indicates that the two images
are the same.

We choose to compare the images from Figures 9 and 10
based upon our RGB representations. For example, previously
we established that the red areas in image (1) of Figure 9
are a representation of the offense. Therefore, we compare the
offensive channel of image (1) in Figure 9 to the historical
offensive data of image (1) in Figure 10. We then compare
image (2) of Figure 9 to image (2) of Figure 10 (historical
ball data). We choose to compare image (3) of Figure 9, which
we stated before represents both offensive and ball activity, to
both the historical ball (2) and offense images (1) of Figure 10.
After computing the SSIM for each part of the third filter of
Figure 9, we average the two SSIM scores. Last, we compare
image (4) of Figure 9 to historical defensive data displayed
in image (3) of Figure 10. We calculate the SSIM for two
cases: the entire court and the half of the court containing the
hoop. We choose these two cases because the filter images of
Figure 9 show activity away from the court while the images
of Figure 10 do not. We detail the comparison images and
resulting SSIM scores in Table II.

TABLE II: SSIM Results

Figure 9 Image Figure 10 Image SSIM (Half) SSIM (Full)
Filter (1) Offense (1) 0.623 0.715
Filter (2) Ball (2) 0.310 0.277
Filter (3) Offense, Ball (1,2) 0.554 0.580
Filter (4) Defense (3) 0.561 0.680

When calculating the SSIM for both half court and full court
images, we expected that the full court image scores would
be lower. However, as seen in Table II, this is not the case
for a majority of the images. Historical data from Figure 10
shows that most activity is near the hoop; however, there is
some activity far away from the hoop (likely due to transition
plays). Since the filters of Figure 9 capture this, the full court
SSIM is larger for three out of four of the Figure 9 images.

The worst performing image using SSIM as our evaluation
tool is image (2) from Figure 9 with an SSIM of 0.310. This
is due to a lack of large green areas near the hoop of the court
in the filter image. When considering the entire court, image
(2) from Figure 9 shows ball activity in the corners away from
the hoop. Since the historical ball image in Figure 10 shows
no activity in the upper corners, it is not surprising that it is
the worst performing image.

Examining the results of Table II, we can scrutinize the
strength of our CNN. The accuracy of the CNN is close to that
of the FFN, but the SSIM scores show room for improvement.
It is clear that the CNN struggles to identify ball information
when comparing image (2) of Figure 9 to historical ball data.

VII. CONCLUSION

Rather than other methods that incorporate transitions be-
tween a coarse and fine-grained approach or use small pieces
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10 (a) 10 (b) 10 (c)

Fig. 10: 10 (a) Historical offense data 10 (b) Historical ball data 10 (c) Historical defense data. Figures on the court of hot
spots for the offense, ball, and defense at the time of a shot. Note that the defense is much more tightly packed around the
hoop than the offense.

of trajectory data, we utilize the full trajectory data of
both offensive and defensive players. Since player alignments
commonly permute, an image-based approach maintains the
general spatial alignment of the players on the court. To
integrate the time dependency of the trajectories, we introduce
“fading” to our images to capture player paths. We found that
using linear fading rather than a one-hot fade, works much
better in our predictions. In addition, using a different color
for each trajectory does not increase predictability in an RGB,
three channel, image. Since traditional CNN’s utilize three
channels, we found that networks created to work with that
kind of data, such as residual networks, AlexNet, and Network
in Network underperformed. We therefore opt to build our
own CNN to handle the trajectory images. Thus, by using our
combined CNN and FFN, we can predict whether a shot is
made with 61.5% accuracy with the CNN proving to be more
accurate than a FFN with hand-crafted features.

We found that by using a CNN, we can further explore
the data using gradient ascent to picture the various filters
of our network. We found that as the network gets deeper,
it tends to gather several features together. For example, in
the first layer, the filters look for shot locations. As we delve
deeper into the network, the filters also begin to look for
defensive and offensive spatial positions to make a more
accurate prediction. Also, the histograms agree with common
knowledge that centers have the highest short percentage since

their shots tend to be right beside the basket.
For further research, it would be very interesting to identify

time dependency in basketball plays. In our image data, we
subtract a flat amount at each equally spaced frame to cause
the fading effect. However, this assumes that the data in time
is linearly related. Since this is not necessarily true, designing
a recurrent model to find this temporal dependency could be a
very interesting problem. Instead of having a fading effect in
the image data, we can design an LSTM that takes a moving
window of player and ball trajectories.

One last aspect that was not considered during this study
was the identities of teams and players. The focus of this
research was to gather more insight on the average shooting
plays of teams in the NBA. However, teams in the NBA have
drastically different strategies. For example, the Golden State
Warriors tend to rely on a three-point strategy while bigger
teams, such the Thunder, build their offensive strategy around
being inside the paint. Thus, new knowledge on basketball
could be gathered if models were applied to different teams
and possibly identify some overall team strategies. Such a
more fine-grained analysis would require much more data.
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