Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1

Search results for: Octonions

1 Octonionic Reformulation of Vector Analysis

Authors: Bhupendra C. S. Chauhan, P. S. Bisht, O. P. S. Negi

Abstract:

According to celebrated Hurwitz theorem, there exists four division algebras consisting of R (real numbers), C (complex numbers), H (quaternions) and O (octonions). Keeping in view the utility of octonion variable we have tried to extend the three dimensional vector analysis to seven dimensional one. Starting with the scalar and vector product in seven dimensions, we have redefined the gradient, divergence and curl in seven dimension. It is shown that the identity n(n - 1)(n - 3)(n - 7) = 0 is satisfied only for 0, 1, 3 and 7 dimensional vectors. We have tried to write all the vector inequalities and formulas in terms of seven dimensions and it is shown that same formulas loose their meaning in seven dimensions due to non-associativity of octonions. The vector formulas are retained only if we put certain restrictions on octonions and split octonions.

Keywords: Octonions, Vector Space and seven dimensions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1045