Search results for: austenising temperature
2333 Prediction of Bath Temperature Using Neural Networks
Authors: H. Meradi, S. Bouhouche, M. Lahreche
Abstract:
In this work, we consider an application of neural networks in LD converter. Application of this approach assumes a reliable prediction of steel temperature and reduces a reblow ratio in steel work. It has been applied a conventional model to charge calculation, the obtained results by this technique are not always good, this is due to the process complexity. Difficulties are mainly generated by the noisy measurement and the process non linearities. Artificial Neural Networks (ANNs) have become a powerful tool for these complex applications. It is used a backpropagation algorithm to learn the neural nets. (ANNs) is used to predict the steel bath temperature in oxygen converter process for the end condition. This model has 11 inputs process variables and one output. The model was tested in steel work, the obtained results by neural approach are better than the conventional model.
Keywords: LD converter, bath temperature, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18372332 Ion- Acoustic Solitary Waves in a Self- Gravitating Dusty Plasma Having Two-Temperature Electrons
Authors: S.N.Paul, G.Pakira, B.Paul, B.Ghosh
Abstract:
Nonlinear propagation of ion-acoustic waves in a selfgravitating dusty plasma consisting of warm positive ions, isothermal two-temperature electrons and negatively charged dust particles having charge fluctuations is studied using the reductive perturbation method. It is shown that the nonlinear propagation of ion-acoustic waves in such plasma can be described by an uncoupled third order partial differential equation which is a modified form of the usual Korteweg-deVries (KdV) equation. From this nonlinear equation, a new type of solution for the ion-acoustic wave is obtained. The effects of two-temperature electrons, gravity and dust charge fluctuations on the ion-acoustic solitary waves are discussed with possible applications.Keywords: Charge fluctuations, gravitating dusty plasma, Ionacoustic solitary wave, Two-temperature electrons
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20492331 Investigation of Fire Damaged Reinforced Concrete Walls with Axial Force
Authors: Hyun Ah Yoon, Ji Yeon Kang, Hee Sun Kim, Yeong Soo Shin
Abstract:
Reinforced concrete (RC) shear wall system of residential buildings is popular in South Korea. RC walls are subjected to axial forces in common and the effect of axial forces on the strength loss of the fire damaged walls has not been investigated. This paper aims at investigating temperature distribution on fire damaged concrete walls having different axial loads. In the experiments, a variable of specimens is axial force ratio. RC walls are fabricated with 150mm of wall thicknesses, 750mm of lengths and 1,300mm of heights having concrete strength of 24MPa. After curing, specimens are heated on one surface with ISO-834 standard time-temperature curve for 2 hours and temperature distributions during the test are measured using thermocouples inside the walls. The experimental results show that the temperature of the RC walls exposed to fire increases as axial force ratio increases. To verify the experiments, finite element (FE) models are generated for coupled temperature-structure analyses. The analytical results of thermal behaviors are in good agreement with the experimental results. The predicted displacement of the walls decreases when the axial force increases.
Keywords: Axial force ratio, coupled analysis, fire, reinforced concrete wall, temperature distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17382330 Yield Onset of Thermo-Mechanical Loading of FGM Thick Walled Cylindrical Pressure Vessels
Authors: S. Ansari Sadrabadi, G. H. Rahimi
Abstract:
In this paper, thick walled Cylindrical tanks or tubes made of functionally graded material under internal pressure and temperature gradient are studied. Material parameters have been considered as power functions. They play important role in the elastoplastic behavior of these materials. To clarify their role, different materials with different parameters have been used under temperature gradient. Finally, their effect and loading effect have been determined in first yield point. Also, the important role of temperature gradient was also shown. At the end the study has been results obtained from changes in the elastic modulus and yield stress. Also special attention is also given to the effects of this internal pressure and temperature gradient in the creation of tensile and compressive stresses.
Keywords: FGM, Cylindrical pressure tubes, Small deformation theory, Yield onset, Thermal loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19452329 Grid-Connected Photovoltaic System: System Overview and Sizing Principles
Authors: Najiya Omar, Hamed Aly, Timothy Little
Abstract:
The optimal size of a photovoltaic (PV) array is considered a critical factor in designing an efficient PV system due to the dependence of the PV cell performance on temperature. A high temperature can lead to voltage losses of solar panels, whereas a low temperature can cause voltage overproduction. There are two possible scenarios of the inverter’s operation in which they are associated with the erroneous calculations of the number of PV panels: 1) If the number of the panels is scant and the temperature is high, the minimum voltage required to operate the inverter will not be reached. As a result, the inverter will shut down. 2) Comparably, if the number of panels is excessive and the temperature is low, the produced voltage will be more than the maximum limit of the inverter which can cause the inverter to get disconnected or even damaged. This article aims to assess theoretical and practical methodologies to calculate size and determine the topology of a PV array. The results are validated by applying an experimental evaluation for a 100 kW Grid-connected PV system for a location in Halifax, Nova Scotia and achieving a satisfactory system performance compared to the previous work done.
Keywords: Sizing PV panels, grid-connected PV, topology of PV array, theoretical and practical methodologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8202328 Buckling Resistance of GFRP Sandwich Infill Panels with Different Cores under Increased Temperatures
Authors: Viriyavudh Sim, Woo Young Jung
Abstract:
This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of increased temperature on the foam core. Failure mode under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length and both the type of foam for core and the variation of its module elastic under the thermal influence. Increment of temperature is considered in static cases and only applied to core. Indeed, it is proven that the effect of temperature alters the mechanical properties of the entire panel system. Moreover, the rises of temperature result in a decrease in strength of the panel. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on performance of infill panel. Their significance factors are based on type of polymer for core. Therefore, by comparing difference type of core material, the variation can be reducing.Keywords: Buckling, contact length, foam core, temperature dependent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19142327 Experimental Investigation on the Lithium-ion Battery Thermal Management System Based on U-Shaped Micro Heat Pipe Array in High Temperature Environment
Authors: Ruyang Ren, Yaohua Zhao, Yanhua Diao
Abstract:
In this study, a type of active air cooling thermal management system (TMS) based on U-shaped micro heat pipe array (MHPA) is established for the battery energy storage box which operates in high ambient temperature all the year round. The thermal management performance of the active air cooling TMS based on U-shaped MHPA under different ambient temperatures and different cooling conditions is analyzed by the method of experimental research. Results show that even if the battery energy storage box operates at a high ambient temperature of 45 °C, the active air cooling TMS based on U-shaped MHPA controls not only the maximum temperature of the battery in the battery energy storage box below 55 °C, but also the maximum temperature difference in the battery energy storage box below 5 °C during the whole charge-discharge process. The experimental results provide guidance for the application of the battery energy storage box TMS that operates in high temperature areas.
Keywords: Active air cooling, lithium-ion battery, micro heat pipe array, thermal management system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3512326 The Effects of North Sea Caspian Pattern Index on the Temperature and Precipitation Regime in the Aegean Region of Turkey
Authors: Cenk Sezen, Turgay Partal
Abstract:
North Sea Caspian Pattern Index (NCP) refers to an atmospheric teleconnection between the North Sea and North Caspian at the 500 hPa geopotential height level. The aim of this study is to search for effects of NCP on annual and seasonal mean temperature and also annual and seasonal precipitation totals in the Aegean region of Turkey. The study contains the data that consist of 46 years obtained from nine meteorological stations. To determine the relationship between NCP and the climatic parameters, firstly the Pearson correlation coefficient method was utilized. According to the results of the analysis, most of the stations in the region have a high negative correlation NCPI in all seasons, especially in the winter season in terms of annual and seasonal mean temperature (statistically at significant at the 90% level). Besides, high negative correlation values between NCPI and precipitation totals are observed during the winter season at the most of stations. Furthermore, the NCPI values were divided into two group as NCPI(-) and NCPI(+), and then mean temperature and precipitation total values, which are grouped according to the NCP(-) and NCP(+) phases, were determined as annual and seasonal. During the NCPI(-), higher mean temperature values are observed in all of seasons, particularly in the winter season compared to the mean temperature values under effect of NCP(+). Similarly, during the NCPI(-) in winter season precipitation total values have higher than the precipitation total values under the effect of NCP(+); however, in other seasons there no substantial changes were observed between the precipitation total values. As a result of this study, significant proof is obtained with regards to the influences of NCP on the temperature and precipitation regime in the Aegean region of Turkey.Keywords: Aegean Region, North Sea Caspian Pattern, precipitation, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12302325 Nonlinear Solitary Structures of Electron Plasma Waves in a Finite Temperature Quantum Plasma
Authors: Swarniv Chandra, Basudev Ghosh
Abstract:
Nonlinear solitary structures of electron plasma waves have been investigated by using nonlinear quantum fluid equations for electrons with an arbitrary temperature. It is shown that the electron degeneracy parameter has significant effects on the linear and nonlinear properties of electron plasma waves. Depending on its value both compressive and rarefactive solitons can be excited in the model plasma under consideration.Keywords: Electron Plasma Waves, Finite Temperature Model, Modulational Instability, Quantum Plasma, Solitary structure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17262324 Energy Based Temperature Profile for Heat Transfer Analysis of Concrete Section Exposed to Fire on One Side
Authors: Pattamad Panedpojaman
Abstract:
For fire safety purposes, the fire resistance and the structural behavior of reinforced concrete members are assessed to satisfy specific fire performance criteria. The available prescribed provisions are based on standard fire load. Under various fire scenarios, engineers are in need of both heat transfer analysis and structural analysis. For heat transfer analysis, the study proposed a modified finite difference method to evaluate the temperature profile within a cross section. The research conducted is limited to concrete sections exposed to a fire on their one side. The method is based on the energy conservation principle and a pre-determined power function of the temperature profile. The power value of 2.7 is found to be a suitable value for concrete sections. The temperature profiles of the proposed method are only slightly deviate from those of the experiment, the FEM and the FDM for various fire loads such as ASTM E 119, ASTM 1529, BS EN 1991-1-2 and 550 oC. The proposed method is useful to avoid incontinence of the large matrix system of the typical finite difference method to solve the temperature profile. Furthermore, design engineers can simply apply the proposed method in regular spreadsheet software.Keywords: temperature profile, finite difference method, concrete section, one-side fire exposed, energy conservation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20752323 The Pack-Bed Sphere Liquid Porous Burner
Authors: B. Krittacom, P. Amatachaya, W. Srimuang, K. Inla
Abstract:
The combustion of liquid fuel in the porous burner (PB) was experimented to investigate evaporation mechanism and combustion behavior. The diesel oil was used as fuel and the pebbles carefully chosen in the same size like the solid sphere homogeneously was adopted as the porous media. Two structures of the liquid porous burner, i.e. the PB without and with installation of porous emitter (PE), were performed. PE was installed by lower than PB with distance of 20 cm. The pebbles having porosity (φ) of 0.45 and 0.52 were, respectively, used in PB and PE. The fuel was supplied dropwise from the top through the PB and the combustion was occurred between PB and PE. Axial profiles of temperature along the burner length were measured to clarify the evaporation and combustion phenomena. The pollutant emission characteristics were monitored at the burner exit. From the experiment, it was found that the temperature profiles of both structures decreased with the three ways swirling air flows (QA) increasing. On the other hand, the temperature profiles increased with fuel heat input (QF). Obviously, the profile of the porous burner installed with PE was higher than that of the porous burner without PEKeywords: Liquid fuel, Porous burner, Temperature profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17622322 Modeling the Effect of Spacer Orientation on Heat Transfer in Membrane Distillation
Authors: M. Shakaib, M. Ehtesham-ul Haq, I. Ahmed, R.M. Yunus
Abstract:
Computational fluid dynamics (CFD) simulations carried out in this paper show that spacer orientation has a major influence on temperature patterns and on the heat transfer rates. The local heat flux values significantly vary from high to very low values at each filament when spacer touches the membrane surface. The heat flux profile is more uniform when spacer filaments are not in contact with the membrane thus making this arrangement more beneficial. The temperature polarization is also found to be less in this case when compared to the empty channel.Keywords: heat transfer, membrane distillation, spacer, temperature polarization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17242321 Influence of Stacking Sequence and Temperature on Buckling Resistance of GFRP Infill Panel
Authors: Viriyavudh Sim, SeungHyun Kim, JungKyu Choi, WooYoung Jung
Abstract:
Glass Fiber Reinforced Polymer (GFRP) is a major evolution for energy dissipation when used as infill material for seismic retrofitting of steel frame, a basic PMC infill wall system consists of two GFRP laminates surrounding an infill of foam core. This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of environment temperature and stacking sequence of laminate skin. Mode of failure under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length between infill and frame, laminate stacking sequence of GFRP skin and variation of mechanical properties due to increment of temperature. The analysis is done with four cases of simple stacking sequence over a range of temperature. The result showed that both the effect of temperature and stacking sequence alter the performance of entire panel system. The rises of temperature resulted in the decrements of the panel’s strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on the performance of infill panel. Furthermore, the laminate stiffness can be modified by orientation of laminate, which can increase the infill panel strength. Hence, optimal performance of the entire panel system can be obtained by comparing different cases of stacking sequence.
Keywords: Buckling resistance, GFRP infill panel, stacking sequence, temperature dependent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15002320 Analyzing of Temperature-Dependent Thermal Conductivity Effect in the Numerical Modeling of Fin-Tube Radiators: Introduction of a New Method
Authors: Farzad Bazdidi-Tehrani, Mohammad Hadi Kamrava
Abstract:
In all industries which are related to heat, suitable thermal ranges are defined for each device to operate well. Consideration of these limits requires a thermal control unit beside the main system. The Satellite Thermal Control Unit exploits from different methods and facilities individually or mixed. For enhancing heat transfer between primary surface and the environment, utilization of radiating extended surfaces are common. Especially for large temperature differences; variable thermal conductivity has a strong effect on performance of such a surface .In most literatures, thermo-physical properties, such as thermal conductivity, are assumed as constant. However, in some recent researches the variation of these parameters is considered. This may be helpful for the evaluation of fin-s temperature distribution in relatively large temperature differences. A new method is introduced to evaluate temperature-dependent thermal conductivity values. The finite volume method is employed to simulate numerically the temperature distribution in a space radiating fin. The present modeling is carried out for Aluminum as fin material and compared with previous method. The present results are also compared with those of two other analytical methods and good agreement is shown.Keywords: Variable thermal conductivity, New method, Finitevolume method, Combined heat transfer, Extended Surface
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23292319 Numerical Study of Fiber Bragg Grating Sensor: Longitudinal and Transverse Detection of Temperature and Strain
Authors: K. Khelil, H. Ammar, K. Saouchi
Abstract:
Fiber Bragg Grating (FBG) structure is an periodically modulated optical fiber. It acts as a selective filter of wavelength whose reflected peak is called Bragg wavelength and it depends on the period of the fiber and the refractive index. The simulation of FBG is based on solving the Coupled Mode Theory equation by using the Transfer Matrix Method which is carried out using MATLAB. It is found that spectral reflectivity is shifted when the change of temperature and strain is uniform. Under non-uniform temperature or strain perturbation, the spectrum is both shifted and destroyed. In case of transverse loading, reflectivity spectrum is split into two peaks, the first is specific to X axis, and the second belongs to Y axis. FBGs are used in civil engineering to detect perturbations applied to buildings.
Keywords: Bragg wavelength, coupled mode theory, optical fiber, temperature measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8852318 Modeling and Simulation of Acoustic Link Using Mackenize Propagation Speed Equation
Authors: Christhu Raj M. R., Rajeev Sukumaran
Abstract:
Underwater acoustic networks have attracted great attention in the last few years because of its numerous applications. High data rate can be achieved by efficiently modeling the physical layer in the network protocol stack. In Acoustic medium, propagation speed of the acoustic waves is dependent on many parameters such as temperature, salinity, density, and depth. Acoustic propagation speed cannot be modeled using standard empirical formulas such as Urick and Thorp descriptions. In this paper, we have modeled the acoustic channel using real time data of temperature, salinity, and speed of Bay of Bengal (Indian Coastal Region). We have modeled the acoustic channel by using Mackenzie speed equation and real time data obtained from National Institute of Oceanography and Technology. It is found that acoustic propagation speed varies between 1503 m/s to 1544 m/s as temperature and depth differs. The simulation results show that temperature, salinity, depth plays major role in acoustic propagation and data rate increases with appropriate data sets substituted in the simulated model.Keywords: Underwater Acoustics, Mackenzie Speed Equation, Temperature, Salinity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21992317 Investigating the Precipitation and Temperature Change Procedure in Zayanderood Watershed
Authors: Amir Gandomkar
Abstract:
Global warming and continental changes have been one of the people's issues in the recent years and its consequences have appeared in the most parts of the earth planet or will appear in the future. Temperature and Precipitation are two main parameters in climatology. Any changes in these two parameters in this region cause widespread changes in the ecosystem and its natural and humanistic structure. One of the important consequences of this procedure is change in surface and underground water resources. Zayanderood watershed basin which is the main central river in Iran has faced water shortage in the recent years and also it has resulted in drought in Gavkhuni swamp and the river itself. Managers and experts in provinces which are the Zayanderood water consumers believe that global warming; raining decrease and continental changes are the main reason of water decrease. By statistical investigation of annual Precipitation and 46 years temperature of internal and external areas of Zayanderood watershed basin's stations and by using Kendal-man method, Precipitation and temperature procedure changes have been analyzed in this basin. According to obtained results, there was not any noticeable decrease or increase procedure in Precipitation and annual temperature in the basin during this period. However, regarding to Precipitation, a noticeable decrease and increase have been observed in small part of western and some parts of eastern and southern basin, respectively. Furthermore, the investigation of annual temperature procedure has shown that a noticeable increase has been observed in some parts of western and eastern basin, and also a noticeable increasing procedure of temperature in the central parts of metropolitan Esfahan can be observed.Keywords: Zayanderood, Man_Kendal, Climate Change
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14802316 A Study of Calcination and Carbonation of Cockle Shell
Authors: N.A. Rashidi, M. Mohamed, S.Yusup
Abstract:
Calcium oxide (CaO) as carbon dioxide (CO2) adsorbent at the elevated temperature has been very well-received thus far. The CaO can be synthesized from natural calcium carbonate (CaCO3) sources through the reversible calcination-carbonation process. In the study, cockle shell has been selected as CaO precursors. The objectives of the study are to investigate the performance of calcination and carbonation with respect to different temperature, heating rate, particle size and the duration time. Overall, better performance is shown at the calcination temperature of 850oC for 40 minutes, heating rate of 20oC/min, particle size of < 0.125mm and the carbonation temperature is at 650oC. The synthesized materials have been characterized by nitrogen physisorption and surface morphology analysis. The effectiveness of the synthesized cockle shell in capturing CO2 (0.72 kg CO2/kg adsorbent) which is comparable to the commercialized adsorbent (0.60 kg CO2/kg adsorbent) makes them as the most promising materials for CO2 capture.Keywords: Calcination, Calcium oxide, Carbonation, Cockle shell
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35922315 Construction and Performance Characterization of the Looped-Tube Travelling-Wave Thermoacoustic Engine with Ceramic Regenerator
Authors: Abdulrahman S. Abduljalil, Zhibin Yu, Artur J. Jaworski, Lei Shi
Abstract:
In a travelling wave thermoacoustic device, the regenerator sandwiched between a pair of (hot and cold) heat exchangers constitutes the so-called thermoacoustic core, where the thermoacoustic energy conversion from heat to acoustic power takes place. The temperature gradient along the regenerator caused by the two heat exchangers excites and maintains the acoustic wave in the resonator. The devices are called travelling wave thermoacoustic systems because the phase angle difference between the pressure and velocity oscillation is close to zero in the regenerator. This paper presents the construction and testing of a thermoacoustic engine equipped with a ceramic regenerator, made from a ceramic material that is usually used as catalyst substrate in vehicles- exhaust systems, with fine square channels (900 cells per square inch). The testing includes the onset temperature difference (minimum temperature difference required to start the acoustic oscillation in an engine), the acoustic power output, thermal efficiency and the temperature profile along the regenerator.Keywords: Regenerator, Temperature gradient, Thermoacoustic, Travelling-wave.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22662314 Heat Treatment of Aluminum Alloy 7449
Authors: Suleiman E. Al-lubani, Mohammad E. Matarneh, Hussien M. Al-Wedyan, Ala M. Rayes
Abstract:
Aluminum alloy has an extensive range of industrial application due to its consistent mechanical properties and structural integrity. The heat treatment by precipitation technique affected the Magnesium, Silicon Manganese and copper crystals dissolved in the Aluminum alloy. The crystals dislocated to precipitate on the crystal’s boundaries of the Aluminum alloy when given a thermal energy increased its hardness. In this project various times and temperature were varied to find out the best combination of these variables to increase the precipitation of the metals on the Aluminum crystal’s boundaries which will lead to get the highest hardness. These specimens are then tested for their hardness and tensile strength. It is noticed that when the temperature increases, the precipitation increases and consequently the hardness increases. A threshold temperature value (264C0) of Aluminum alloy should not be reached due to the occurrence of recrystalization which causes the crystal to grow. This recrystalization process affected the ductility of the alloy and decrease hardness. In addition, and while increasing the temperature the alloy’s mechanical properties will decrease. The mechanical properties, namely tensile and hardness properties are investigated according to standard procedures. In this research, different temperature and time have been applied to increase hardening.The highest hardness at 100°c in 6 hours equals to 207.31 HBR, while at the same temperature and time the lowest elongation equals to 146.5.Keywords: Aluminum alloy, recrystalization process, heat treatment, hardness properties, precipitation, intergranular breakage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40762313 A Comparative Study of a Defective Superconductor/ Semiconductor-Dielectric Photonic Crystal
Authors: S. Sadegzadeh, A. Mousavi
Abstract:
Temperature-dependent tunable photonic crystals have attracted widespread interest in recent years. In this research, transmission characteristics of a one-dimensional photonic crystal structure with a single defect have been studied. Here, we assume two different defect layers: InSb as a semiconducting layer and HgBa2Ca2Cu3O10 as a high-temperature superconducting layer. Both the defect layers have temperature-dependent refractive indexes. Two different types of dielectric materials (Si as a high-refractive index dielectric and MgF2 as a low-refractive index dielectric) are used to construct the asymmetric structures (Si/MgF2)NInSb(Si/MgF2)N named S.I, and (Si/MgF2)NHgBa2Ca2Cu3O10(Si/MgF2)N named S.II. It is found that in response to the temperature changes, transmission peaks within the photonic band gap of the S.II structure, in contrast to S.I, show a small wavelength shift. Furthermore, the results show that under the same conditions, S.I structure generates an extra defect mode in the transmission spectra. Besides high efficiency transmission property of S.II structure, it can be concluded that the semiconductor-dielectric photonic crystals are more sensitive to temperature variation than superconductor types.Keywords: Defect modes, photonic crystals, semiconductor, superconductor, transmission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12522312 The Role of Heat Pumps for the Decarbonization of European Regions
Authors: D. M. Mongelli, M. De Carli, L. Carnieletto, F. Busato
Abstract:
This research aims to provide a contribution to the reduction of fossil fuels and the consequent reduction of CO2eq emissions for each European region. Simulations have been carried out to replace fossil fuel fired heating boilers with air-to-water heat pumps, when allowed by favorable environmental conditions (outdoor temperature, water temperature in emission systems, etc.). To estimate the potential coverage of high-temperature heat pumps in European regions, the energy profiles of buildings were considered together with the potential coefficient of performance (COP) of heat pumps operating with flow temperature with variable climatic regulation. The electrification potential for heating buildings was estimated by dividing the 38 European countries examined into 179 territorial units. The yields have been calculated in terms of energy savings and CO2eq reduction.
Keywords: Decarbonization, Space heating, Heat pumps, Energy policies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112311 Study of the Process of Climate Change According to Data Simulation Using LARS-WG Software during 2010-2030: Case Study of Semnan Province
Authors: Leila Rashidian
Abstract:
Temperature rise on Earth has had harmful effects on the Earth's surface and has led to change in precipitation patterns all around the world. The present research was aimed to study the process of climate change according to the data simulation in future and compare these parameters with current situation in the studied stations in Semnan province including Garmsar, Shahrood and Semnan. In this regard, LARS-WG software, HADCM3 model and A2 scenario were used for the 2010-2030 period. In this model, climatic parameters such as maximum and minimum temperature, precipitation and radiation were used daily. The obtained results indicated that there will be a 4.4% increase in precipitation in Semnan province compared with the observed data, and in general, there will be a 1.9% increase in temperature. This temperature rise has significant impact on precipitation patterns. Most of precipitation will be raining (torrential rains in some cases). According to the results, from west to east, the country will experience more temperature rise and will be warmer.
Keywords: Climate change, Semnan province, LARS-WG model, climate parameters, HADCM3 model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11512310 Hot Workability of High Strength Low Alloy Steels
Authors: Seok Hong Min, Jung Ho Moon, Woo Young Jung, Tae Kwon Ha
Abstract:
The hot deformation behavior of high strength low alloy (HSLA) steels with different chemical compositions under hot working conditions in the temperature range of 900 to 1100℃ and strain rate range from 0.1 to 10 s-1 has been studied by performing a series of hot compression tests. The dynamic materials model has been employed for developing the processing maps, which show variation of the efficiency of power dissipation with temperature and strain rate. Also the Kumar-s model has been used for developing the instability map, which shows variation of the instability for plastic deformation with temperature and strain rate. The efficiency of power dissipation increased with decreasing strain rate and increasing temperature in the steel with higher Cr and Ti content. High efficiency of power dissipation over 20 % was obtained at a finite strain level of 0.1 under the conditions of strain rate lower than 1 s-1 and temperature higher than 1050 ℃ . Plastic instability was expected in the regime of temperatures lower than 1000 ℃ and strain rate lower than 0.3 s-1. Steel with lower Cr and Ti contents showed high efficiency of power dissipation at higher strain rate and lower temperature conditions.Keywords: High strength low alloys steels, hot workability, Dynamic materials model, Processing maps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20192309 Calibrations and Effect of Different Operating Conditions on the Performance of a Fluid Power Control System with Servo Solenoid Valve
Authors: Tahany W. Sadak, Fouly, A. Anwer, M. Rizk
Abstract:
The current investigation presents a study on the hydraulic performance of an electro-hydraulic servo solenoid valve controlled linear piston used in hydraulic systems. Advanced methods have been used to measure and record laboratory experiments, to ensure accurate analysis and evaluation. Experiments have been conducted under different values of temperature (28, 40 and 50 °C), supply pressure (10, 20, 30, 40 and 50 bar), system stiffness (32 N/mm), and load (0.0 & 5560 N). It is concluded that increasing temperature of hydraulic oil increases the quantity of flow rate, so it achieves an increase of the quantity of flow by 5.75 % up to 48.8 % depending on operating conditions. The values of pressure decay at low temperature are less than the values at high temperature. The frequency increases with the increase of the temperature. When we connect the springs to the system, it decreases system frequency. These results are very useful in the process of packing and manufacturing of fluid products, where the properties are not affected by 50 °C, so energy and time are saved.
Keywords: Electro Hydraulic Servo Valve, fluid power control system, system stiffness, static and dynamic performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6802308 Smith Predictor Design by CDM for Temperature Control System
Authors: Roengruen P., Tipsuwanporn V., Puawade P., Numsomran A.
Abstract:
Smith Predictor control is theoretically a good solution to the problem of controlling the time delay systems. However, it seldom gets use because it is almost impossible to find out a precise mathematical model of the practical system and very sensitive to uncertain system with variable time-delay. In this paper is concerned with a design method of smith predictor for temperature control system by Coefficient Diagram Method (CDM). The simulation results show that the control system with smith predictor design by CDM is stable and robust whilst giving the desired time domain system performance.
Keywords: CDM, Smith Predictor, temperature process
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24332307 Particle Simulation of Rarefied Gas Flows witha Superimposed Wall Surface Temperature Gradient in Microgeometries
Authors: V. Azadeh Ranjbar
Abstract:
Rarefied gas flows are often occurred in micro electro mechanical systems and classical CFD could not precisely anticipate the flow and thermal behavior due to the high Knudsen number. Therefore, the heat transfer and the fluid dynamics characteristics of rarefied gas flows in both a two-dimensional simple microchannel and geometry similar to single Knudsen compressor have been investigated with a goal of increasing performance of a actual Knudsen compressor by using a particle simulation method. Thermal transpiration and thermal creep, which are rarefied gas dynamic phenomena, that cause movement of the flow from less to higher temperature is generated by using two different longitude temperature gradients (Linear, Step) along the walls of the flow microchannel. In this study the influence of amount of temperature gradient and governing pressure in various Knudsen numbers and length-to-height ratios have been examined.Keywords: DSMC, Thermal transpiration, Thermal creep, MEMS, Knudsen Compressor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12532306 Determination of Strain Rate Sensitivity (SRS) for Grain Size Variants on Nanocrystalline Material Produced by ARB and ECAP
Authors: P. B. Sob, A. A. Alugongo, T. B. Tengen
Abstract:
Mechanical behavior of 6082T6 aluminum is investigated at different temperatures. The strain rate sensitivity is investigated at different temperatures on the grain size variants. The sensitivity of the measured grain size variants on 3-D grain is discussed. It is shown that the strain rate sensitivities are negative for the grain size variants during the deformation of nanostructured materials. It is also observed that the strain rate sensitivities vary in different ways with the equivalent radius, semi minor axis radius, semi major axis radius and major axis radius. From the obtained results, it is shown that the variation of strain rate sensitivity with temperature suggests that the strain rate sensitivity at the low and the high temperature ends of the 6082T6 aluminum range is different. The obtained results revealed transition at different temperature from negative strain rate sensitivity as temperature increased on the grain size variants.Keywords: Nanostructured materials, grain size variants, temperature, yield stress, strain rate sensitivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18442305 Study of Temperature Changes in Fars Province
Authors: A. Gandomkar, R. Dehghani
Abstract:
Climate change is a phenomenon has been based on the available evidence from a very long time ago and now its existence is very probable. The speed and nature of climate parameters changes at the middle of twentieth century has been different and its quickness more than the before and its trend changed to some extent comparing to the past. Climate change issue now regarded as not only one of the most common scientific topic but also a social political one, is not a new issue. Climate change is a complicated atmospheric oceanic phenomenon on a global scale and long-term. Precipitation pattern change, fast decrease of snowcovered resources and its rapid melting, increased evaporation, the occurrence of destroying floods, water shortage crisis, severe reduction at the rate of harvesting agricultural products and, so on are all the significant of climate change. To cope with this phenomenon, its consequences and events in which public instruction is the most important but it may be climate that no significant cant and effective action has been done so far. The present article is included a part of one surrey about climate change in Fars. The study area having annually mean temperature 14 and precipitation 320 mm .23 stations inside the basin with a common 37 year statistical period have been applied to the meteorology data (1974-2010). Man-kendal and change factor methods are two statistical methods, applying them, the trend of changes and the annual mean average temperature and the annual minimum mean temperature were studied by using them. Based on time series for each parameter, the annual mean average temperature and the mean of annual maximum temperature have a rising trend so that this trend is clearer to the mean of annual maximum temperature.Keywords: Climate change, Coefficient Variation, Fars province, Man-Kendal method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19152304 A New Time Dependent, High Temperature Analytical Model for the Single-electron Box in Digital Applications
Authors: M.J. Sharifi
Abstract:
Several models have been introduced so far for single electron box, SEB, which all of them were restricted to DC response and or low temperature limit. In this paper we introduce a new time dependent, high temperature analytical model for SEB for the first time. DC behavior of the introduced model will be verified against SIMON software and its time behavior will be verified against a newly published paper regarding step response of SEB.Keywords: Single electron box, SPICE, SIMON, Timedependent, Circuit model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1236