Search results for: Voltage and Current harmonics
2912 Soil Resistivity Data Computations; Single and Two - Layer Soil Resistivity Structure and Its Implication on Earthing Design
Authors: M. Nassereddine, J. Rizk, G. Nasserddine
Abstract:
Performing High Voltage (HV) tasks with a multi craft work force create a special set of safety circumstances. This paper aims to present vital information relating to when it is acceptable to use a single or a two-layer soil structure. Also it discusses the implication of the high voltage infrastructure on the earth grid and the safety of this implication under a single or a two-layer soil structure. A multiple case study is investigated to show the importance of using the right soil resistivity structure during the earthing system design.Keywords: Earth Grid, EPR, High Voltage, Soil Resistivity Structure, Step Voltage, Touch Voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 88232911 3D Shape Modelling of Left Ventricle: Towards Correlation of Myocardial Scintigraphy Data and Coronarography Result
Authors: A. Ben Abdallah, H. Essabbah, M. H. Bedoui
Abstract:
The myocardial sintigraphy is an imaging modality which provides functional informations. Whereas, coronarography modality gives useful informations about coronary arteries anatomy. In case of coronary artery disease (CAD), the coronarography can not determine precisely which moderate lesions (artery reduction between 50% and 70%), known as the “gray zone", are haemodynamicaly significant. In this paper, we aim to define the relationship between the location and the degree of the stenosis in coronary arteries and the observed perfusion on the myocardial scintigraphy. This allows us to model the impact evolution of these stenoses in order to justify a coronarography or to avoid it for patients suspected being in the gray zone. Our approach is decomposed in two steps. The first step consists in modelling a coronary artery bed and stenoses of different location and degree. The second step consists in modelling the left ventricle at stress and at rest using the sphercical harmonics model and myocardial scintigraphic data. We use the spherical harmonics descriptors to analyse left ventricle model deformation between stress and rest which permits us to conclude if ever an ischemia exists and to quantify it.
Keywords: Spherical harmonics model, vascular bed, 3D reconstruction, left ventricle, myocardial scintigraphy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17942910 Compensation of Power Quality Disturbances Using DVR
Authors: R. Rezaeipour
Abstract:
One of the key aspects of power quality improvement in power system is the mitigation of voltage sags/swells and flicker. Custom power devices have been known as the best tools for voltage disturbances mitigation as well as reactive power compensation. Dynamic Voltage Restorer (DVR) which is the most efficient and effective modern custom power device can provide the most commercial solution to solve several problems of power quality in distribution networks. This paper deals with analysis and simulation technique of DVR based on instantaneous power theory which is a quick control to detect signals. The main purpose of this work is to remove three important disturbances including voltage sags/swells and flicker. Simulation of the proposed method was carried out on two sample systems by using Matlab software environment and the results of simulation show that the proposed method is able to provide desirable power quality in the presence of wide range of disturbances.Keywords: DVR, Power quality, Voltage sags, Voltage swells, Flicker.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20032909 Analytical Estimation of Rotor Loss Due to Stator Slotting of Synchronous PM Machines
Authors: Adel Bettayeb, Robert Kaczmarek, Jean-Claude Vannier
Abstract:
In this paper, we analyze the rotor eddy currents losses provoqued by the stator slot harmonics developed in the permanent magnets or pole pieces of synchronous machines. An analytical approach is presented to evaluate the effect of slot ripples on rotor field and losses calculation. This analysis is then tested on a model by 2D/3D finite element (FE) calculation. The results show a good agreement on loss calculations when skin effect is negligible and the magnet is considered.
Keywords: Analytical modeling, Eddy-currents, Finite-elementmethods, Power losses, Slot harmonics effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25602908 Bifurcation Study and Parameter Analyses Boost Converter
Authors: S. Ben Said, K. Ben Saad, M. Benrejeb
Abstract:
This paper deals with bifurcation analyses in current programmed DC/DC Boost converter and exhibition of chaotic behavior. This phenomenon occurs due to variation of a set of the studied circuit parameters (input voltage and a reference current). Two different types of bifurcation paths have been observed as part as part of another bifurcation arising from variation of suitable chosen parameter.
Keywords: Bifurcation, Chaos, Boost converter, Current- programmed control, Initial parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24182907 Impact Porous Dielectric Silica Gel for Operating Voltage and Power Discharge Reactor
Authors: E. Gnapowski, S. Gnapowski
Abstract:
This study examined the effect of porous dielectric silica gel the discharge ignition voltage and input power in a plasma reactor. For the experiment was used a plasma reactor with two mesh electrodes made of stainless steel with a mesh size of 0.1x0.1mm. The study analyzed and compared with parameters such as power, ignition and operation voltage of the reactor for two dielectrics a porous and glass. During experiment were observed several new phenomena conducted for porous dielectric. The first phenomenon was the reduction the ignition voltage discharge to volume around few hundred volts. Second it was increase input power six times more compared with power those obtained for the glass dielectric. Thirdly difference it is ΔV between ignition voltage Vi and operating voltage reactor Vm for porous dielectric it was 11%, while ΔV for the glass dielectric it was 60%. Also change the discharge characteristics from DBD for glass dielectric to the streamer resistance discharge for the porous dielectric.
Keywords: Input power, mesh electrodes, onset voltage, porous dielectric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19432906 Clustering based Voltage Control Areas for Localized Reactive Power Management in Deregulated Power System
Authors: Saran Satsangi, Ashish Saini, Amit Saraswat
Abstract:
In this paper, a new K-means clustering based approach for identification of voltage control areas is developed. Voltage control areas are important for efficient reactive power management in power systems operating under deregulated environment. Although, voltage control areas are formed using conventional hierarchical clustering based method, but the present paper investigate the capability of K-means clustering for the purpose of forming voltage control areas. The proposed method is tested and compared for IEEE 14 bus and IEEE 30 bus systems. The results show that this K-means based method is competing with conventional hierarchical approachKeywords: Voltage control areas, reactive power management, K-means clustering algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23992905 The Use of Voltage Stability Indices and Proposed Instability Prediction to Coordinate with Protection Systems
Authors: R. Leelaruji, V. Knazkins
Abstract:
This paper proposes a methodology for mitigating the occurrence of cascading failure in stressed power systems. The methodology is essentially based on predicting voltage instability in the power system using a voltage stability index and then devising a corrective action in order to increase the voltage stability margin. The paper starts with a brief description of the cascading failure mechanism which is probable root cause of severe blackouts. Then, the voltage instability indices are introduced in order to evaluate stability limit. The aim of the analysis is to assure that the coordination of protection, by adopting load shedding scheme, capable of enhancing performance of the system after the major location of instability is determined. Finally, the proposed method to generate instability prediction is introduced.
Keywords: Blackouts, cascading failure, voltage stability indices, singular value decomposition, load shedding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15512904 A Continuous Time Sigma Delta Modulators Using CMOS Current Conveyors
Authors: E. Farshidi, N. Ahmadpoor
Abstract:
In this paper, a alternative structure method for continuous time sigma delta modulator is presented. In this modulator for implementation of integrators in loop filter second generation current conveyors are employed. The modulator is designed in CMOS technology and features low power consumption (<2.8mW), low supply voltage (±1.65), wide dynamic range (>65db), and with 180khZ bandwidth. Simulation results confirm that this design is suitable for data converters.Keywords: Current Conveyor, continuous, sigma delta, MOS, modulator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21232903 Static Voltage Stability Assessment Considering the Power System Contingencies using Continuation Power Flow Method
Authors: Mostafa Alinezhad, Mehrdad Ahmadi Kamarposhti
Abstract:
According to the increasing utilization in power system, the transmission lines and power plants often operate in stability boundary and system probably lose its stable condition by over loading or occurring disturbance. According to the reasons that are mentioned, the prediction and recognition of voltage instability in power system has particular importance and it makes the network security stronger.This paper, by considering of power system contingencies based on the effects of them on Mega Watt Margin (MWM) and maximum loading point is focused in order to analyse the static voltage stability using continuation power flow method. The study has been carried out on IEEE 14-Bus Test System using Matlab and Psat softwares and results are presented.
Keywords: Contingency, Continuation Power Flow, Static Voltage Stability, Voltage Collapse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22142902 Versatile Dual-Mode Class-AB Four-Quadrant Analog Multiplier
Authors: Montree Kumngern, Kobchai Dejhan
Abstract:
Versatile dual-mode class-AB CMOS four-quadrant analog multiplier circuit is presented. The dual translinear loops and current mirrors are the basic building blocks in realization scheme. This technique provides; wide dynamic range, wide-bandwidth response and low power consumption. The major advantages of this approach are; its has single ended inputs; since its input is dual translinear loop operate in class-AB mode which make this multiplier configuration interesting for low-power applications; current multiplying, voltage multiplying, or current and voltage multiplying can be obtainable with balanced input. The simulation results of versatile analog multiplier demonstrate a linearity error of 1.2 %, a -3dB bandwidth of about 19MHz, a maximum power consumption of 0.46mW, and temperature compensated. Operation of versatile analog multiplier was also confirmed through an experiment using CMOS transistor array.Keywords: Class-AB, dual-mode CMOS analog multiplier, CMOS analog integrated circuit, CMOS translinear integrated circuit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22862901 DC Bus Voltage Regulator for Renewable Energy Based Microgrid Application
Authors: Bakari M. M. Mwinyiwiwa
Abstract:
Renewable Energy based microgrids are being considered to provide electricity for the expanding energy demand in the grid distribution network and grid isolated areas. The technical challenges associated with the operation and controls are immense. Electricity generation by Renewable Energy Sources is of stochastic nature such that there is a demand for regulation of voltage output in order to satisfy the standard loads’ requirements. In a renewable energy based microgrid, the energy sources give stochastically variable magnitude AC or DC voltages. AC voltage regulation of micro and mini sources pose practical challenges as well as unbearable costs. It is therefore practically and economically viable to convert the voltage outputs from stochastic AC and DC voltage sources to constant DC voltage to satisfy various DC loads including inverters which ultimately feed AC loads. This paper presents results obtained from SEPIC converter based DC bus voltage regulator as a case study for renewable energy microgrid application. Real-Time Simulation results show that upon appropriate choice of controller parameters for control of the SEPIC converter, the output DC bus voltage can be kept constant regardless of wide range of voltage variations of the source. This feature is particularly important in the situation that multiple renewable sources are to be integrated to supply a microgrid under main grid integration or isolated modes of operation.
Keywords: DC Voltage Regulator, microgrid, multisource, Renewable Energy, SEPIC Converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43112900 Single Ion Transport with a Single-Layer Graphene Nanopore
Authors: Vishal V. R. Nandigana, Mohammad Heiranian, Narayana R. Aluru
Abstract:
Graphene material has found tremendous applications in water desalination, DNA sequencing and energy storage. Multiple nanopores are etched to create opening for water desalination and energy storage applications. The nanopores created are of the order of 3-5 nm allowing multiple ions to transport through the pore. In this paper, we present for the first time, molecular dynamics study of single ion transport, where only one ion passes through the graphene nanopore. The diameter of the graphene nanopore is of the same order as the hydration layers formed around each ion. Analogous to single electron transport resulting from ionic transport is observed for the first time. The current-voltage characteristics of such a device are similar to single electron transport in quantum dots. The current is blocked until a critical voltage, as the ions are trapped inside a hydration shell. The trapped ions have a high energy barrier compared to the applied input electrical voltage, preventing the ion to break free from the hydration shell. This region is called “Coulomb blockade region”. In this region, we observe zero transport of ions inside the nanopore. However, when the electrical voltage is beyond the critical voltage, the ion has sufficient energy to break free from the energy barrier created by the hydration shell to enter into the pore. Thus, the input voltage can control the transport of the ion inside the nanopore. The device therefore acts as a binary storage unit, storing 0 when no ion passes through the pore and storing 1 when a single ion passes through the pore. We therefore postulate that the device can be used for fluidic computing applications in chemistry and biology, mimicking a computer. Furthermore, the trapped ion stores a finite charge in the Coulomb blockade region; hence the device also acts a super capacitor.Keywords: Graphene, single ion transport, Coulomb blockade, fluidic computer, super capacitor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7232899 Effect of Current Density, Temperature and Pressure on Proton Exchange Membrane Electrolyser Stack
Authors: Na Li, Samuel Simon Araya, Søren Knudsen Kær
Abstract:
This study investigates the effects of operating parameters of different current density, temperature and pressure on the performance of a proton exchange membrane (PEM) water electrolysis stack. A 7-cell PEM water electrolysis stack was assembled and tested under different operation modules. The voltage change and polarization curves under different test conditions, namely current density, temperature and pressure, were recorded. Results show that higher temperature has positive effect on overall stack performance, where temperature of 80 ℃ improved the cell performance greatly. However, the cathode pressure and current density has little effect on stack performance.
Keywords: PEM electrolysis stack, current density, temperature, pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10622898 Modelling and Simulation of Cascaded H-Bridge Multilevel Single Source Inverter Using PSIM
Authors: Gaddafi S. Shehu, T. Yalcinoz, Abdullahi B. Kunya
Abstract:
Multilevel inverters such as flying capacitor, diodeclamped, and cascaded H-bridge inverters are very popular particularly in medium and high power applications. This paper focuses on a cascaded H-bridge module using a single direct current (DC) source in order to generate an 11-level output voltage. The noble approach reduces the number of switches and gate drivers, in comparison with a conventional method. The anticipated topology produces more accurate result with an isolation transformer at high switching frequency. Different modulation techniques can be used for the multilevel inverter, but this work features modulation techniques known as selective harmonic elimination (SHE).This modulation approach reduces the number of carriers with reduction in Switching Losses, Total Harmonic Distortion (THD), and thereby increasing Power Quality (PQ). Based on the simulation result obtained, it appears SHE has the ability to eliminate selected harmonics by chopping off the fundamental output component. The performance evaluation of the proposed cascaded multilevel inverter is performed using PSIM simulation package and THD of 0.94% is obtained.
Keywords: Cascaded H-bridge Multilevel Inverter, Power Quality, Selective Harmonic Elimination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50962897 Adaptive Discharge Time Control for Battery Operation Time Enhancement
Authors: Jong-Bae Lee, Seongsoo Lee
Abstract:
This paper proposes an adaptive discharge time control method to balance cell voltages in alternating battery cell discharging method. In the alternating battery cell discharging method, battery cells are periodically discharged in turn. Recovery effect increases battery output voltage while the given battery cell rests without discharging, thus battery operation time of target system increases. However, voltage mismatch between cells leads two problems. First, voltage difference between cells induces inter-cell current with wasted power. Second, it degrades battery operation time, since system stops when any cell reaches to the minimum system operation voltage. To solve this problem, the proposed method adaptively controls cell discharge time to equalize both cell voltages. In the proposed method, battery operation time increases about 19%, while alternating battery cell discharging method shows about 7% improvement.
Keywords: Battery, Recovery Effect, Low-Power, Alternating Battery Cell Discharging, Adaptive Discharge Time Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14982896 A Comparative Studies on Methanesulfonic and p-Touluene Sulfonic Acid Incorporated Polyacrylamide Gel Polymer Electrolyte for Tin-Air Battery
Authors: S. Sumathi, V. Sethuprakhash, W. J. Basirun
Abstract:
This study was focused on polymer electrolytes containing methanesulfonic acid (MSA) and p-toluene sulfonic acid (pTSA) mixed with polyacrylamide (PAAm) respectively. Impedance Spectroscopy technique has been employed to compare the ionic conductivity of these polymer electrolytes. The ionic conductivity of the PAAm hydrogel electrolytes increase upon adding the sulfonic acids. Ionic conductivity of PAAm-pTSA is higher than PAAm-MSA. The electrochemical performance evaluations were done with the tin-air cells discharge at zero current for 30minutes and at constant current density of 2.5, 5, 7.5, 10, 12.5 and 15mA/cm2. The tin-air cell of PAAm-MSA produce higher specific discharge capacity compared to PAAm-pTSA. Open-circuit voltage measurement revealed a higher voltage for tin-air cell of PAAm-MSA which is 1.27V.
Keywords: Methane sulfonic acid, polyacrylamide, polymer gel electrolytes, p-toluene sulfonic acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36442895 Voltage Stability Margin-Based Approach for Placement of Distributed Generators in Power Systems
Authors: Oludamilare Bode Adewuyi, Yanxia Sun, Isaiah Gbadegesin Adebayo
Abstract:
Voltage stability analysis is crucial to the reliable and economic operation of power systems. The power system of developing nations is more susceptible to failures due to the continuously increasing load demand which is not matched with generation increase and efficient transmission infrastructures. Thus, most power systems are heavily stressed and the planning of extra generation from distributed generation sources needs to be efficiently done so as to ensure the security of the power system. In this paper, the performance of a relatively different approach using line voltage stability margin indicator, which has proven to have better accuracy, has been presented and compared with a conventional line voltage stability index for distributed generators (DGs) siting using the Nigerian 28 bus system. Critical Boundary Index (CBI) for voltage stability margin estimation was deployed to identify suitable locations for DG placement and the performance was compared with DG placement using Novel Line Stability Index (NLSI) approach. From the simulation results, both CBI and NLSI agreed greatly on suitable locations for DG on the test system; while CBI identified bus 18 as the most suitable at system overload, NLSI identified bus 8 to be the most suitable. Considering the effect of the DG placement at the selected buses on the voltage magnitude profile, the result shows that the DG placed on bus 18 identified by CBI improved the performance of the power system better.
Keywords: Voltage stability analysis, voltage collapse, voltage stability index, distributed generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4562894 Identification of Transformer Core Vibrations and the Effect of Third Harmonic in the Electricity Grid
Authors: Setareh Gorji Ghalamestani, Lieven Vandevelde, Jan Melkebeek
Abstract:
In this work, an experimental technique is applied for the measurements of the vibrations and deformation of a test transformer core. Since the grid voltage contains some higher harmonics, in addition to a purely sinusoidal magnetisation of the core the presence of third harmonic is also studied. The vibrations of the transformer core for points as well as the surface scan of the leg show more deformation in the corners of the leg than the middle of the leg. The influence of the higher harmonic of the magnetisation on the core deformation is also more significant in the corners of the leg. The core deformation shape under a sinusoidal magnetisation with a higher harmonic is more wavy and fluctuating than that under a purely sinusoidal magnetisation.
Keywords: Vibrations and noise, transformer, vibration measurements, laser vibrometer, higher harmonic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29842893 Characterization of the In0.53Ga0.47As n+nn+ Photodetectors
Authors: Fatima Zohra Mahi, Luca Varani
Abstract:
We present an analytical model for the calculation of the sensitivity, the spectral current noise and the detective parameter for an optically illuminated In0.53Ga0.47As n+nn+ diode. The photocurrent due to the excess carrier is obtained by solving the continuity equation. Moreover, the current noise level is evaluated at room temperature and under a constant voltage applied between the diode terminals. The analytical calculation of the current noise in the n+nn+ structure is developed by considering the free carries fluctuations. The responsivity and the detection parameter are discussed as functions of the doping concentrations and the emitter layer thickness in one-dimensional homogeneous n+nn+ structure.
Keywords: Responsivity, detection parameter, photo-detectors, continuity equation, current noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20622892 Coordination between SC and SVC for Voltage Stability Improvement
Authors: Ali Reza Rajabi, Shahab Rashnoei, Mojtaba Hakimzadeh, Amir Habibi
Abstract:
At any point of time, a power system operating condition should be stable, meeting various operational criteria and it should also be secure in the event of any credible contingency. Present day power systems are being operated closer to their stability limits due to economic and environmental constraints. Maintaining a stable and secure operation of a power system is therefore a very important and challenging issue. Voltage instability has been given much attention by power system researchers and planners in recent years, and is being regarded as one of the major sources of power system insecurity. Voltage instability phenomena are the ones in which the receiving end voltage decreases well below its normal value and does not come back even after setting restoring mechanisms such as VAR compensators, or continues to oscillate for lack of damping against the disturbances. Reactive power limit of power system is one of the major causes of voltage instability. This paper investigates the effects of coordinated series capacitors (SC) with static VAR compensators (SVC) on steady-state voltage stability of a power system. Also, the influence of the presence of series capacitor on static VAR compensator controller parameters and ratings required to stabilize load voltages at certain values are highlighted.
Keywords: Static VAR Compensator (SVC), Series Capacitor (SC), voltage stability, reactive power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19662891 Physical Parameters for Reliability Evaluation
Abstract:
This paper presents ageing experiments controlled by the evolution of junction parameters. The deterioration of the device is related to high injection effects which modified the transport mechanisms in the space charge region of the junction. Physical phenomena linked to the degradation of junction parameters that affect the devices reliability are reported and discussed. We have used the method based on numerical analysis of experimental current-voltage characteristic of the junction, in order to extract the electrical parameters. The simultaneous follow-up of the evolutions of the series resistance and of the transition voltage allow us to introduce a new parameter for reliability evaluation.
Keywords: High injection, junction, parameters, reliability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13812890 A Model for Analysis the Induced Voltage of 115 kV On-Line Acting on Neighboring 22 kV Off-Line
Authors: S. Woothipatanapan, S. Prakobkit
Abstract:
This paper presents a model for analysis the induced voltage of transmission lines (energized) acting on neighboring distribution lines (de-energized). From environmental restrictions, 22 kV distribution lines need to be installed under 115 kV transmission lines. With the installation of the two parallel circuits like this, they make the induced voltage which can cause harm to operators. This work was performed with the ATP-EMTP modeling to analyze such phenomenon before field testing. Simulation results are used to find solutions to prevent danger to operators who are on the pole.
Keywords: Transmission system, distribution system, induced voltage, off-line operation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35722889 Electrical Characteristics of SCR - based ESD Device for I/O and Power Rail Clamp in 0.35um Process
Authors: Yong Seo Koo, Dong Su Kim, Byung Seok Lee, Won Suk Park, Bo Bea Song
Abstract:
This paper presents a SCR-based ESD protection devices for I/O clamp and power rail clamp, respectably. These devices have a low trigger voltage and high holding voltage characteristics than conventional SCR device. These devices are fabricated by using 0.35um BCD (Bipolar-CMOS-DMOS) processes. These devices were validated using a TLP system. From the experimental results, the device for I/O ESD clamp has a trigger voltage of 5.8V. Also, the device for power rail ESD clamp has a holding voltage of 7.7V.
Keywords: ESD (Electro-Static Discharge), ESD protection device, SCR (Silicon Controlled Rectifier), Latch-up
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27742888 Current Controlled Current Conveyor (CCCII)and Application using 65nm CMOS Technology
Authors: Zia Abbas, Giuseppe Scotti, Mauro Olivieri
Abstract:
Current mode circuits like current conveyors are getting significant attention in current analog ICs design due to their higher band-width, greater linearity, larger dynamic range, simpler circuitry, lower power consumption and less chip area. The second generation current controlled conveyor (CCCII) has the advantage of electronic adjustability over the CCII i.e. in CCCII; adjustment of the X-terminal intrinsic resistance via a bias current is possible. The presented approach is based on the CMOS implementation of second generation positive (CCCII+), negative (CCCII-) and dual Output Current Controlled Conveyor (DOCCCII) and its application as Universal filter. All the circuits have been designed and simulated using 65nm CMOS technology model parameters on Cadence Virtuoso / Spectre using 1V supply voltage. Various simulations have been carried out to verify the linearity between output and input ports, range of operation frequency, etc. The outcomes show good agreement between expected and experimental results.Keywords: CCCII+, CCCII-, DOCCCII, Electronic tunability, Universal filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47052887 Power System Load Shedding: Key Issues and New Perspectives
Authors: H. Bevrani, A. G. Tikdari, T. Hiyama
Abstract:
Optimal load shedding (LS) design as an emergency plan is one of the main control challenges posed by emerging new uncertainties and numerous distributed generators including renewable energy sources in a modern power system. This paper presents an overview of the key issues and new challenges on optimal LS synthesis concerning the integration of wind turbine units into the power systems. Following a brief survey on the existing LS methods, the impact of power fluctuation produced by wind powers on system frequency and voltage performance is presented. The most LS schemas proposed so far used voltage or frequency parameter via under-frequency or under-voltage LS schemes. Here, the necessity of considering both voltage and frequency indices to achieve a more effective and comprehensive LS strategy is emphasized. Then it is clarified that this problem will be more dominated in the presence of wind turbines.
Keywords: Load shedding, emergency control, voltage, frequency, wind turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41392886 Off-State Leakage Power Reduction by Automatic Monitoring and Control System
Authors: S. Abdollahi Pour, M. Saneei
Abstract:
This paper propose a new circuit design which monitor total leakage current during standby mode and generates the optimal reverse body bias voltage, by using the adaptive body bias (ABB) technique to compensate die-to-die parameter variations. Design details of power monitor are examined using simulation framework in 65nm and 32nm BTPM model CMOS process. Experimental results show the overhead of proposed circuit in terms of its power consumption is about 10 μW for 32nm technology and about 12 μW for 65nm technology at the same power supply voltage as the core power supply. Moreover the results show that our proposed circuit design is not far sensitive to the temperature variations and also process variations. Besides, uses the simple blocks which offer good sensitivity, high speed, the continuously feedback loop.Keywords: leakage current, leakage power monitor, body biasing, low power
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17392885 Effect of Applied Voltage Frequency on Electrical Treeing in 22 kV Cross-linked Polyethylene Insulated Cable
Authors: R. Thiamsri, N. Ruangkajonmathee, A. Oonsivilaiand B. Marungsri
Abstract:
This paper presents the experimental results on effect of applied voltage stress frequency to the occurrence of electrical treeing in 22 kV cross linked polyethylene (XLPE) insulated cable.Hallow disk of XLPE insulating material with thickness 5 mm taken from unused high voltage cable was used as the specimen in this study. Stainless steel needle was inserted gradually into the specimen to give a tip to earth plane electrode separation of 2.50.2 mm at elevated temperature 105-110°C. The specimen was then annealed for 5 minute to minimize any mechanical stress build up around the needle-plane region before it was cooled down to room temperature. Each specimen were subjected to the same applied voltage stress level at 8 kV AC rms, with various frequency, 50, 100, 500, 1000 and 2000 Hz. Initiation time, propagation speed and pattern of electrical treeing were examined in order to study the effect of applied voltage stress frequency. By the experimental results, initial time of visible treeing decreases with increasing in applied voltage frequency. Also, obviously, propagation speed of electrical treeing increases with increasing in applied voltage frequency.Furthermore, two types of electrical treeing, bush-like and branch-like treeing were observed.The experimental results confirmed the effect of voltage stress frequency as well.
Keywords: Voltage stress frequency, cross-linked polyethylene, electrical treeing, treeing propagation, treeing pattern
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26212884 Design and Simulation of CCM Boost Converter for Power Factor Correction Using Variable Duty Cycle Control
Authors: M. Nirmala
Abstract:
Power quality in terms of power factor, THD and precisely regulated output voltage are the major key factors for efficient operation of power electronic converters. This paper presents an easy and effective active wave shaping control scheme for the pulsed input current drawn by the uncontrolled diode bridge rectifier thereby achieving power factor nearer to unity and also satisfying the THD specifications. It also regulates the output DC-bus voltage. CCM boost power factor correction with constant frequency operation features smaller inductor current ripple resulting in low RMS currents on inductor and switch thus leading to low electromagnetic interference. The objective of this work is to develop an active PFC control circuit using CCM boost converter implementing variable duty cycle control. The proposed scheme eliminates inductor current sensing requirements yet offering good performance and satisfactory results for maintaining the power quality. Simulation results have been presented which covers load changes also.
Keywords: CCM Boost converter, Power factor Correction, Total harmonic distortion, Variable Duty Cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75052883 A Low-Voltage Tunable Channel Selection Filter for WiMAX Applications
Authors: Kayvan Ahmadi, Hossein Shamsi
Abstract:
This paper proposes a low-voltage and low-power fully integrated digitally tuned continuous-time channel selection filter for WiMAX applications. A 5th-order elliptic low-pass filter is realized in a Gm-C topology. The bandwidth of the fully differential filter is reconfigurable from 2.5MHz to 20MHz (8x) for different requirements in WiMAX applications. The filter is simulated in a standard 90nm CMOS process. Simulation results show the THD (@Vout =100mVpp) is less than -66dB. The in-band ripple of the filter is about 0.15dB. The filter consumes 1.5mW from a supply voltage of 0.9V.Keywords: Common-mode feedback, continuous-time, fully differential transconductor, Gm-C topology, low-voltage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608