Search results for: Multi-objective decision making techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4357

Search results for: Multi-objective decision making techniques

2137 Exponential State Estimation for Neural Networks with Leakage, Discrete and Distributed Delays

Authors: Liyuan Wang, Shouming Zhong

Abstract:

In this paper, the design problem of state estimator for neural networks with the mixed time-varying delays are investigated by constructing appropriate Lyapunov-Krasovskii functionals and using some effective mathematical techniques. In order to derive several conditions to guarantee the estimation error systems to be globally exponential stable, we transform the considered systems into the neural-type time-delay systems. Then with a set of linear inequalities(LMIs), we can obtain the stable criteria. Finally, three numerical examples are given to show the effectiveness and less conservatism of the proposed criterion.

Keywords: State estimator, Neural networks, Globally exponential stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
2136 Initialization Method of Reference Vectors for Improvement of Recognition Accuracy in LVQ

Authors: Yuji Mizuno, Hiroshi Mabuchi

Abstract:

Initial values of reference vectors have significant influence on recognition accuracy in LVQ. There are several existing techniques, such as SOM and k-means, for setting initial values of reference vectors, each of which has provided some positive results. However, those results are not sufficient for the improvement of recognition accuracy. This study proposes an ACO-used method for initializing reference vectors with an aim to achieve recognition accuracy higher than those obtained through conventional methods. Moreover, we will demonstrate the effectiveness of the proposed method by applying it to the wine data and English vowel data and comparing its results with those of conventional methods.

Keywords: Clustering, LVQ, ACO, SOM, k-means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1255
2135 Design of the Mathematical Model of the Respiratory System Using Electro-acoustic Analogy

Authors: M. Rozanek, K. Roubik

Abstract:

The article deals with development, design and implementation of a mathematical model of the human respiratory system. The model is designed in order to simulate distribution of important intrapulmonary parameters along the bronchial tree such as pressure amplitude, tidal volume and effect of regional mechanical lung properties upon the efficiency of various ventilatory techniques. Therefore exact agreement of the model structure with the lung anatomical structure is required. The model is based on the lung morphology and electro-acoustic analogy is used to design the model.

Keywords: Model of the respiratory system, total lung impedance, intrapulmonary parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
2134 Survey on Image Mining Using Genetic Algorithm

Authors: Jyoti Dua

Abstract:

One image is worth more than thousand words. Images if analyzed can reveal useful information. Low level image processing deals with the extraction of specific feature from a single image. Now the question arises: What technique should be used to extract patterns of very large and detailed image database? The answer of the question is: “Image Mining”. Image Mining deals with the extraction of image data relationship, implicit knowledge, and another pattern from the collection of images or image database. It is nothing but the extension of Data Mining. In the following paper, not only we are going to scrutinize the current techniques of image mining but also present a new technique for mining images using Genetic Algorithm.

Keywords: Image Mining, Data Mining, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2444
2133 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing ECG Based on ResNet and Bi-LSTM

Authors: Yang Zhang, Jian He

Abstract:

Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper presents sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for CHD prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.

Keywords: Bi-LSTM, CHD, coronary heart disease, ECG, electrocardiogram, ResNet, sliding window.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 332
2132 Investigation of Utilization Possibility of Fluid Gas Desulfurization Waste for Industrial Waste Water Treatment

Authors: S. Kızıltas Demir, A. S. Kipcak, E. Moroydor Derun, N. Tugrul, S. Piskin

Abstract:

Flue gas desulfurization gypsum (FGD) is a waste material arouse from coal power plants. Hydroxyapatite (HAP) is a biomaterial with porous structure. In this study, FGD gypsum which retrieved from coal power plant in Turkey was characterized and HAP particles which can be used as an adsorbent in wastewater treatment application were synthesized from the FGD gypsum. The raw materials are characterized by using X Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) techniques and produced HAP are characterized by using XRD. As a result, HAP particles were synthesized at the molar ratio of 5:10, 5:15, 5:20, 5:24, at room temperature, in alkaline medium (pH=11) and in 1 hour-reaction time. Among these conditions, 5:20 had the best result.

Keywords: FGD wastes, HAP, gypsum, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
2131 Intelligent Multi-Agent Middleware for Ubiquitous Home Networking Environments

Authors: Minwoo Son, Seung-Hun Lee, Dongkyoo Shin, Dongil Shin

Abstract:

The next stage of the home networking environment is supposed to be ubiquitous, where each piece of material is equipped with an RFID (Radio Frequency Identification) tag. To fully support the ubiquitous environment, home networking middleware should be able to recommend home services based on a user-s interests and efficiently manage information on service usage profiles for the users. Therefore, USN (Ubiquitous Sensor Network) technology, which recognizes and manages a appliance-s state-information (location, capabilities, and so on) by connecting RFID tags is considered. The Intelligent Multi-Agent Middleware (IMAM) architecture was proposed to intelligently manage the mobile RFID-based home networking and to automatically supply information about home services that match a user-s interests. Evaluation results for personalization services for IMAM using Bayesian-Net and Decision Trees are presented.

Keywords: Intelligent Agents, Home Network, Mobile RFID, Intelligent Middleware.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
2130 Observation of the Correlations between Pair Wise Interaction and Functional Organization of the Proteins, in the Protein Interaction Network of Saccaromyces Cerevisiae

Authors: N. Tuncbag, T. Haliloglu, O. Keskin

Abstract:

Understanding the cell's large-scale organization is an interesting task in computational biology. Thus, protein-protein interactions can reveal important organization and function of the cell. Here, we investigated the correspondence between protein interactions and function for the yeast. We obtained the correlations among the set of proteins. Then these correlations are clustered using both the hierarchical and biclustering methods. The detailed analyses of proteins in each cluster were carried out by making use of their functional annotations. As a result, we found that some functional classes appear together in almost all biclusters. On the other hand, in hierarchical clustering, the dominancy of one functional class is observed. In brief, from interaction data to function, some correlated results are noticed about the relationship between interaction and function which might give clues about the organization of the proteins.

Keywords: Pair-wise protein interactions, DIP database, functional correlations, biclustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
2129 Facebook Spam and Spam Filter Using Artificial Neural Networks

Authors: Fahim A., Mutahira N. Naseem

Abstract:

Spam is any unwanted electronic message or material in any form posted too many people. As the world is growing as global world, social networking sites play an important role in making world global providing people from different parts of the world a platform to meet and express their views. Among different social networking sites Facebook become the leading one. With increase in usage different users start abusive use of Facebook by posting or creating ways to post spam. This paper highlights the potential spam types nowadays Facebook users’ faces. This paper also provide the reason how user become victim to spam attack. A methodology is proposed in the end discusses how to handle different types of spam.

Keywords: Artificial neural networks, Facebook spam, social networking sites, spam filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3137
2128 Case Based Reasoning Technology for Medical Diagnosis

Authors: Abdel-Badeeh M. Salem

Abstract:

Case based reasoning (CBR) methodology presents a foundation for a new technology of building intelligent computeraided diagnoses systems. This Technology directly addresses the problems found in the traditional Artificial Intelligence (AI) techniques, e.g. the problems of knowledge acquisition, remembering, robust and maintenance. This paper discusses the CBR methodology, the research issues and technical aspects of implementing intelligent medical diagnoses systems. Successful applications in cancer and heart diseases developed by Medical Informatics Research Group at Ain Shams University are also discussed.

Keywords: Medical Informatics, Computer-Aided MedicalDiagnoses, AI in Medicine, Case-Based Reasoning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2942
2127 Economic Optimization of Shell and Tube Heat Exchanger Using Nanofluid

Authors: Hassan Hajabdollahi

Abstract:

Economic optimization of shell and tube heat exchanger (STHE) is presented in this paper. To increase the rate of heat transfer, copper oxide (CuO) nanoparticle is added into the tube side fluid and their optimum results are compared with the case of without additive nanoparticle. Total annual cost (TAC) is selected as fitness function and nine decision variables related to the heat exchanger parameters as well as concentration of nanoparticle are considered. Optimization results reveal the noticeable improvement in the TAC and in the case of heat exchanger working with nanofluid compared with the case of base fluid (8.9%). Comparison of the results between two studied cases also reveal that the lower tube diameter, tube number, and baffle spacing are needed in the case of heat exchanger working with nanofluid compared with the case of base fluid.

Keywords: Shell and tube heat exchanger, nanoparticles additive, total annual cost, particle volumetric concentration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1118
2126 A New Model for Discovering XML Association Rules from XML Documents

Authors: R. AliMohammadzadeh, M. Rahgozar, A. Zarnani

Abstract:

The inherent flexibilities of XML in both structure and semantics makes mining from XML data a complex task with more challenges compared to traditional association rule mining in relational databases. In this paper, we propose a new model for the effective extraction of generalized association rules form a XML document collection. We directly use frequent subtree mining techniques in the discovery process and do not ignore the tree structure of data in the final rules. The frequent subtrees based on the user provided support are split to complement subtrees to form the rules. We explain our model within multi-steps from data preparation to rule generation.

Keywords: XML, Data Mining, Association Rule Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
2125 Risk and Uncertainty in Aviation: A Thorough Analysis of System Vulnerabilities

Authors: C. V. Pietreanu, S. E. Zaharia, C. Dinu

Abstract:

Hazard assessment and risks quantification are key components for estimating the impact of existing regulations. But since regulatory compliance cannot cover all risks in aviation, the authors point out that by studying causal factors and eliminating uncertainty, an accurate analysis can be outlined. The research debuts by making delimitations on notions, as confusion on the terms over time has reflected in less rigorous analysis. Throughout this paper, it will be emphasized the fact that the variation in human performance and organizational factors represent the biggest threat from an operational perspective. Therefore, advanced risk assessment methods analyzed by the authors aim to understand vulnerabilities of the system given by a nonlinear behavior. Ultimately, the mathematical modeling of existing hazards and risks by eliminating uncertainty implies establishing an optimal solution (i.e. risk minimization).

Keywords: Control, human factor, optimization, risk management, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
2124 The Role of Synthetic Data in Aerial Object Detection

Authors: Ava Dodd, Jonathan Adams

Abstract:

The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represent another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.

Keywords: computer vision, machine learning, synthetic data, YOLOv4

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 847
2123 OCR/ICR Text Recognition Using ABBYY FineReader as an Example Text

Authors: A. R. Bagirzade, A. Sh. Najafova, S. M. Yessirkepova, E. S. Albert

Abstract:

This article describes a text recognition method based on Optical Character Recognition (OCR). The features of the OCR method were examined using the ABBYY FineReader program. It describes automatic text recognition in images. OCR is necessary because optical input devices can only transmit raster graphics as a result. Text recognition describes the task of recognizing letters shown as such, to identify and assign them an assigned numerical value in accordance with the usual text encoding (ASCII, Unicode). The peculiarity of this study conducted by the authors using the example of the ABBYY FineReader, was confirmed and shown in practice, the improvement of digital text recognition platforms developed by Electronic Publication.

Keywords: ABBYY FineReader system, algorithm symbol recognition, OCR/ICR techniques, recognition technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777
2122 FILMS based ANC System – Evaluation and Practical Implementation

Authors: Branislav Vuksanović, Dragana Nikolić

Abstract:

This paper describes the implementation and testing of a multichannel active noise control system (ANCS) based on the filtered-inverse LMS (FILMS) algorithm. The FILMS algorithm is derived from the well-known filtered-x LMS (FXLMS) algorithm with the aim to improve the rate of convergence of the multichannel FXLMS algorithm and to reduce its computational load. Laboratory setup and techniques used to implement this system efficiently are described in this paper. Experiments performed in order to test the performance of the FILMS algorithm are discussed and the obtained results presented.

Keywords: Active noise control, adaptive filters, inverse filters, LMS algorithm, FILMS algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
2121 Dynamics and Control of a Chaotic Electromagnetic System

Authors: Shun-Chang Chang

Abstract:

In this paper, different nonlinear dynamics analysis techniques are employed to unveil the rich nonlinear phenomena of the electromagnetic system. In particular, bifurcation diagrams, time responses, phase portraits, Poincare maps, power spectrum analysis, and the construction of basins of attraction are all powerful and effective tools for nonlinear dynamics problems. We also employ the method of Lyapunov exponents to show the occurrence of chaotic motion and to verify those numerical simulation results. Finally, two cases of a chaotic electromagnetic system being effectively controlled by a reference signal or being synchronized to another nonlinear electromagnetic system are presented.

Keywords: bifurcation, Poincare map, Lyapunov exponent, chaotic motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
2120 Aquatic Modeling: An Interplay between Scales

Authors: Christina G. Siontorou

Abstract:

This paper presents an integrated knowledge-based approach to multi-scale modeling of aquatic systems, with a view to enhancing predictive power and aiding environmental management and policy-making. The basic phases of this approach have been exemplified in the case of a bay in Saronicos Gulf (Attiki, Greece). The results showed a significant problem with rising phytoplankton blooms linked to excessive microbial growth, arisen mostly due to increased nitrogen inflows; therefore, the nitrification/denitrification processes of the benthic and water column sub-systems have provided the quality variables to be monitored for assessing environmental status. It is thereby demonstrated that the proposed approach facilitates modeling choices and implementation option decisions, while it provides substantial support for knowledge and experience capitalization in long-term water management.

Keywords: Aquatic ecosystem, integrated modeling, multi-scale modeling, ontological platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2328
2119 Stability Criteria for Neural Networks with Two Additive Time-varying Delay Components

Authors: Qingqing Wang, Shouming Zhong

Abstract:

This paper is concerned with the stability problem with two additive time-varying delay components. By choosing one augmented Lyapunov-Krasovskii functional, using some new zero equalities, and combining linear matrix inequalities (LMI) techniques, two new sufficient criteria ensuring the global stability asymptotic stability of DNNs is obtained. These stability criteria are present in terms of linear matrix inequalities and can be easily checked. Finally, some examples are showed to demonstrate the effectiveness and less conservatism of the proposed method.

Keywords: Neural networks, Globally asymptotic stability, LMI approach, Additive time-varying delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
2118 Resistive Switching in TaN/AlNx/TiN Cell

Authors: Hsin-Ping Huang, Shyankay Jou

Abstract:

Resistive switching of aluminum nitride (AlNx) thin film was demonstrated in a TaN/AlNx/TiN memory cell that was prepared by sputter deposition techniques. The memory cell showed bipolar switching of resistance between +3.5 V and –3.5 V. The resistance ratio of high resistance state (HRS) to low resistance state (HRS), RHRS/RLRS, was about 2 over 100 cycles of endurance test. Both the LRS and HRS of the memory cell exhibited ohmic conduction at low voltages and Poole-Frenkel emission at high voltages. The electrical conduction in the TaN/AlNx/TiN memory cell was possibly attributed to the interactions between charges and defects in the AlNx film.

Keywords: Aluminum nitride, nonvolatile memory, resistive switching, thin films.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2699
2117 On the Quantizer Design for Base Station Cooperation Systems with SC-FDE Techniques

Authors: K. Firsanov, S. Gritsutenko, R. Dinis

Abstract:

By employing BS (Base Station) cooperation we can increase substantially the spectral efficiency and capacity of cellular systems. The signals received at each BS are sent to a central unit that performs the separation of the different MT (Mobile Terminal) using the same physical channel. However, we need accurate sampling and quantization of those signals so as to reduce the backhaul communication requirements. In this paper we consider the optimization of the quantizers for BS cooperation systems. Four different quantizer types are analyzed and optimized to allow better SQNR (Signal-to-Quantization Noise Ratio) and BER (Bit Error Rate) performance.

Keywords: Base Stations cooperation scheme, Bit Error Rate (BER), Quantizer, Signal to Quantization Noise Ratio (SQNR), SCFDE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
2116 Clustering-Based Detection of Alzheimer's Disease Using Brain MR Images

Authors: Sofia Matoug, Amr Abdel-Dayem

Abstract:

This paper presents a comprehensive survey of recent research studies to segment and classify brain MR (magnetic resonance) images in order to detect significant changes to brain ventricles. The paper also presents a general framework for detecting regions that atrophy, which can help neurologists in detecting and staging Alzheimer. Furthermore, a prototype was implemented to segment brain MR images in order to extract the region of interest (ROI) and then, a classifier was employed to differentiate between normal and abnormal brain tissues. Experimental results show that the proposed scheme can provide a reliable second opinion that neurologists can benefit from.

Keywords: Alzheimer, brain images, classification techniques, Magnetic Resonance Images, MRI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
2115 Using Degree of Adaptive (DOA) Model for Partner Selection in Supply Chain

Authors: Habibollah Javanmard

Abstract:

In order to reduce cost, increase quality, and for timely supplying production systems has considerably taken the advantages of supply chain management and these advantages are also competitive. Selection of appropriate supplier has an important role in improvement and efficiency of systems. The models of supplier selection which have already been used by researchers have considered selection one or more suppliers from potential suppliers but in this paper selecting one supplier as partner from one supplier that have minimum one period supplying to buyer is considered. This paper presents a conceptual model for partner selection and application of Degree of Adoptive (DOA) model for final selection. The attributes weight in this model is prepared through AHP model. After making the descriptive model, determining the attributes and measuring the parameters of the adaptive is examined in an auto industry of Iran(Zagross Khodro co.) and results are presented.

Keywords: Partnership, Degree of Adaptive, AHP, SupplyChain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
2114 Flexibility in Modular Furniture Systems in Open Offices, Famagusta, North Cyprus

Authors: E. Farjami, La. Mohammadzadeh Afshar, Li. Mohammadzade Afshar, A. Taran

Abstract:

Nowadays, flexibility introduced as a modern technology in furniture systems especially in interior planning design. According to results, the most important impact of these systems can be seen on open plan design that makes workspaces comfortable and increases the productivity of employees besides making good relationship between them. Briefly, there are some factors along with new systems in furniture design help create inappropriate space to make working better and easier while it has modular planning organization. It brings about some approaches to have a successful space for open offices with modular design and flexible furniture systems. These approaches have been investigated in open and close offices at Eastern Mediterranean University (EMU) in Famagusta, Cyprus, using information extracted from questionnaires.

Keywords: Flexibility, Flexible Furniture, Modular design, Open offices, Modular furniture systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2707
2113 Balancing Neural Trees to Improve Classification Performance

Authors: Asha Rani, Christian Micheloni, Gian Luca Foresti

Abstract:

In this paper, a neural tree (NT) classifier having a simple perceptron at each node is considered. A new concept for making a balanced tree is applied in the learning algorithm of the tree. At each node, if the perceptron classification is not accurate and unbalanced, then it is replaced by a new perceptron. This separates the training set in such a way that almost the equal number of patterns fall into each of the classes. Moreover, each perceptron is trained only for the classes which are present at respective node and ignore other classes. Splitting nodes are employed into the neural tree architecture to divide the training set when the current perceptron node repeats the same classification of the parent node. A new error function based on the depth of the tree is introduced to reduce the computational time for the training of a perceptron. Experiments are performed to check the efficiency and encouraging results are obtained in terms of accuracy and computational costs.

Keywords: Neural Tree, Pattern Classification, Perceptron, Splitting Nodes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224
2112 Meteorological Data Study and Forecasting Using Particle Swarm Optimization Algorithm

Authors: S. Esfandeh, M. Sedighizadeh

Abstract:

Weather systems use enormously complex combinations of numerical tools for study and forecasting. Unfortunately, due to phenomena in the world climate, such as the greenhouse effect, classical models may become insufficient mostly because they lack adaptation. Therefore, the weather forecast problem is matched for heuristic approaches, such as Evolutionary Algorithms. Experimentation with heuristic methods like Particle Swarm Optimization (PSO) algorithm can lead to the development of new insights or promising models that can be fine tuned with more focused techniques. This paper describes a PSO approach for analysis and prediction of data and provides experimental results of the aforementioned method on realworld meteorological time series.

Keywords: Weather, Climate, PSO, Prediction, Meteorological

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075
2111 A Modified AES Based Algorithm for Image Encryption

Authors: M. Zeghid, M. Machhout, L. Khriji, A. Baganne, R. Tourki

Abstract:

With the fast evolution of digital data exchange, security information becomes much important in data storage and transmission. Due to the increasing use of images in industrial process, it is essential to protect the confidential image data from unauthorized access. In this paper, we analyze the Advanced Encryption Standard (AES), and we add a key stream generator (A5/1, W7) to AES to ensure improving the encryption performance; mainly for images characterised by reduced entropy. The implementation of both techniques has been realized for experimental purposes. Detailed results in terms of security analysis and implementation are given. Comparative study with traditional encryption algorithms is shown the superiority of the modified algorithm.

Keywords: Cryptography, Encryption, Advanced EncryptionStandard (AES), ECB mode, statistical analysis, key streamgenerator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5056
2110 Concurrency without Locking in Parallel Hash Structures used for Data Processing

Authors: Ákos Dudás, Sándor Juhász

Abstract:

Various mechanisms providing mutual exclusion and thread synchronization can be used to support parallel processing within a single computer. Instead of using locks, semaphores, barriers or other traditional approaches in this paper we focus on alternative ways for making better use of modern multithreaded architectures and preparing hash tables for concurrent accesses. Hash structures will be used to demonstrate and compare two entirely different approaches (rule based cooperation and hardware synchronization support) to an efficient parallel implementation using traditional locks. Comparison includes implementation details, performance ranking and scalability issues. We aim at understanding the effects the parallelization schemes have on the execution environment with special focus on the memory system and memory access characteristics.

Keywords: Lock-free synchronization, mutual exclusion, parallel hash tables, parallel performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
2109 A Discretizing Method for Reliability Computation in Complex Stress-strength Models

Authors: Alessandro Barbiero

Abstract:

This paper proposes, implements and evaluates an original discretization method for continuous random variables, in order to estimate the reliability of systems for which stress and strength are defined as complex functions, and whose reliability is not derivable through analytic techniques. This method is compared to other two discretizing approaches appeared in literature, also through a comparative study involving four engineering applications. The results show that the proposal is very efficient in terms of closeness of the estimates to the true (simulated) reliability. In the study we analyzed both a normal and a non-normal distribution for the random variables: this method is theoretically suitable for each parametric family.

Keywords: Approximation, asymmetry, experimental design, interference theory, Monte Carlo simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
2108 Language and Retrieval Accuracy

Authors: Ahmed Abdelali, Jim Cowie, Hamdy S. Soliman

Abstract:

One of the major challenges in the Information Retrieval field is handling the massive amount of information available to Internet users. Existing ranking techniques and strategies that govern the retrieval process fall short of expected accuracy. Often relevant documents are buried deep in the list of documents returned by the search engine. In order to improve retrieval accuracy we examine the issue of language effect on the retrieval process. Then, we propose a solution for a more biased, user-centric relevance for retrieved data. The results demonstrate that using indices based on variations of the same language enhances the accuracy of search engines for individual users.

Keywords: Information Search and Retrieval, LanguageVariants, Search Engine, Retrieval Accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476