
 

 

 
Abstract—Heart disease is one of the leading causes of death in 

the world, and coronary heart disease (CHD) is one of the major heart 
diseases. Electrocardiogram (ECG) is widely used in the detection of 
heart diseases, but the traditional manual method for CHD prediction 
by analyzing ECG requires lots of professional knowledge for doctors. 
This paper presents sliding window and continuous wavelet transform 
(CWT) to transform ECG signals into images, and then ResNet and 
Bi-LSTM are introduced to build the ECG feature extraction network 
(namely ECGNet). At last, an auxiliary system for CHD prediction was 
developed based on modified ResNet18 and Bi-LSTM, and the public 
ECG dataset of CHD from MIMIC-3 was used to train and test the 
system. The experimental results show that the accuracy of the method 
is 83%, and the F1-score is 83%. Compared with the available methods 
for CHD prediction based on ECG, such as kNN, decision tree, 
VGGNet, etc., this method not only improves the prediction accuracy 
but also could avoid the degradation phenomenon of the deep learning 
network. 
 

Keywords—Bi-LSTM, CHD, coronary heart disease, ECG, 
electrocardiogram, ResNet, sliding window. 

I. INTRODUCTION 

EART disease is the main cause of death nowadays, and 
CHD is the most common form of cardiovascular disease, 

accounting for about 13% of deaths in the United States [1]. 
Timely diagnosis of CHD is crucial to reduce the health risks 
caused by CHD such as cardiac arrest, so researchers began to 
study auxiliary diagnostic techniques for CHD. 

In medicine, the auxiliary diagnostic techniques of CHD 
mainly include the auxiliary diagnosis based on physiological 
indicators, based on cardiac medical imaging and based on 
ECG. Among them, studies on auxiliary diagnosis based on 
physiological indicators are as follows: Kannel et al. found that 
major risk factors such as hypertension, high cholesterol and 
diabetes are related to CHD [2]. Irie et al.'s study on the general 
population showed that high levels of creatinine in blood can 
increase the risk of CHD [3]. In addition, blood cholesterol and 
glycoprotein levels in patients with CHD have been found to be 
consistently and significantly increased [4]. However, these 
measurements and analyses of many physiological indicators of 
CHD will increase the complexity of auxiliary diagnosis. In 
contrast, the auxiliary diagnosis of CHD based on medical 
imaging has the characteristics of accuracy and efficiency. For 
example, Madani et al. used a deep learning model [5] on 
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echocardiogram images to judge CHD. Shi and Gu applied 
Coronary Arteriography (CAG) technique for the identification 
and diagnosis of CHD in Chinese medicine and achieved good 
results [6]. However, imaging test for CHD are expensive and 
the use of imaging techniques can be physically damaging to 
patients. ECG monitors patients' real-time ECG signals to assist 
doctors in disease diagnosis, and is a commonly used auxiliary 
diagnostic technique for CHD [7]. For example, Jin et al. used 
ECG signals to predict clinically important parameters related 
to patients with CHD (such as heart rate and axial migration) 
[8]. Wang et al. analyzed the nonlinear dynamic characteristics 
of ECG to diagnose CHD [9].  

With the development of IT technology, researchers apply 
machine learning techniques to the study of CHD auxiliary 
diagnostic technology. Among them, the techniques using 
traditional machine learning algorithms are based on statistical 
analysis, decision tree and artificial neural network. For 
example, Cross et al. proposed a risk scoring system for clinical 
risk factors of CHD based on Cox regression model using 
physiological indicators such as serum protein, etc. to prevent 
the occurrence of CHD [10]. Meghan et al. studied the 
relationship between serum ferritin and the risk of CHD by 
using logistic regression and found that the risk of CHD 
increased by 5.1% for every 10 units of serum ferritin increase 
[11]. However, the simple prediction effect of these regression 
analysis methods is not significant. Therefore, the following 
methods are introduced, among which the relevant research 
based on decision tree is as follows: Maryam et al. established 
a prediction model of CHD based on 12 physiological 
indicators by using decision tree algorithm [12]. Karaolis et al. 
used C4.5 decision tree to predict the occurrence of CHD based 
on three groups of physiological indicators, with an accuracy of 
75% [13]. However, the method based on decision tree ignores 
the correlation between data and is prone to overfitting. In terms 
of research based on artificial neural network: Rajeswari et al. 
proposed to use artificial neural network technology to mine 
knowledge from medical data to identify the risk level of CHD 
[14]. However, artificial neural networks are less efficient to 
train against large architectures. Most of the above machine 
learning methods for CHD diagnosis are based on numerous 
physiological indicators. With the success of deep learning 
technology in natural language processing (NLP), computer 
vision and other aspects, researchers have tried to apply deep 
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learning technology in the auxiliary diagnosis of CHD in recent 
years. For example, Han and Liang found in a comparative 
study that VGGNet19 convolutional network could effectively 
improve the efficiency of left ventricular segmentation of 
echocardiography and play an important role in the diagnosis of 
CHD [15]. Li et al. proposed a Deep Neural Network (DNN) 
based model named craftNet, which is used to accurately 
identify manual features to detect CHD and achieved a good 
accuracy [16]. Although ECG is an important technology in the 
auxiliary diagnosis of CHD, there is currently a lack of 
application of deep learning in the analysis of ECG data. In this 
paper, ECG scalogram is constructed by sliding window and 
CWT, and ECG time-frequency feature extraction network is 
constructed by combining ResNet and Bi-LSTM techniques, an 
ECG auxiliary diagnosis network with ResNet and Bi-LSTM is 
implemented named ECGNet. In addition, the ECG datasets 
exposed by MIMIC-3 was used for network training and 
testing, and the effectiveness of the proposed method was 
verified by experiments. 

The remainder of this paper is organized as follows. Section 
II analyzes the ECG differences between CHD patients and 
normal people, and introduces the technology of Butterworth 
high-pass filter to denoise the original ECG signals, and the 
technology of sliding window and CWT to extract the time-
frequency features of ECG. Section III introduces the network 
architecture of ECGNet and the principles of ResNet and Bi-
LSTM respectively. Section IV introduces the implementation 
method of ECGNet. Section V uses MIMIC-3 ECG datasets for 
network training and verification, and analyzes the 
experimental results. Section VI presents the conclusion, and 
the suggestion for future works. 

II. METHODOLOGY 

In this section, based on the analysis of ECG features of CHD 
patients, noise in ECG data is filtered by Butterworth high-pass 
filter, secondly, sliding window and CWT techniques are 
introduced to realize time-frequency feature conversion of ECG 
signals, which provide the basis for the subsequent construction 

of deep learning-based auxiliary diagnosis of CHD. 

A. ECG Feature Analysis for CHD 

Since myocardial ischemia caused by CHD can cause 
specific changes in ECG, it is an important tool to monitor heart 
status and is commonly used in clinical diagnosis of CHD. 
Compared with the ECG of a normal person, the ECG of 
patients with CHD has three characteristics: (1) the T-wave is 
low; (2) the ST segment has downward movement; (3) The R-
wave has decrease. Fig. 1 compares the ECG images of normal 
person and patients with CHD. I, II and III in the figure are the 
data sampled from the three lead positions of the ECG, it can 
be seen that data from CHD patient in all three lead positions 
may have all three of these characteristics, so it is only 
necessary to select one of the lead positions to study the 
characteristics of coronary patients, and in this paper the lead 
III portion of the ECG is selected. 

Generally, ECG data collected by instruments and devices 
are susceptible to effects such as respiration, which can 
generate ultra-low frequency signal noise, thus leading to 
baseline roaming effect [17]. To this end, a 0.5 Hz Butterworth 
high-pass filter is used to remove baseline drift caused by 
motion, sensor impedance and respiration. The ideal high-pass 
filter cannot be realized by electronic components and has 
ringing phenomenon. Therefore, Butterworth high-pass filter is 
the most commonly used high-pass filter in practice. The 
transfer function of the filter can be calculated as (1): 

 

))),(/(1/(1),(H 2
0

nvuDDvu        (1) 

 
D(u,v) represents the distance from the midpoint of the 
frequency to the frequency plane and is the cut-off frequency. 
When D(u,v) is greater than the D0, H(u,v) gradually close to 1, 
the high frequency part can pass through the filter; when D(u,v) 
is less than the D0, H(u,v) gradually close to 0, the low 
frequency part cannot pass through the filter. In this paper, the 
low-frequency signal noise in ECG data is filtered by 
Butterworth high-pass filter. 

 

 

Fig. 1 Comparison of ECG between normal and CHD patients 
 

B. Sliding Window for ECG 

Since the human ECG data collected by ECG are continuous 

stream data, they cannot be directly applied to machine learning 
algorithms. In this regard, the sliding window technique is 
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introduced in this paper to segment the ECG data. In this paper, 
a timestamp is set for each ECG data, as new ECG data are 
continuously generated, the system continuously updates the 
old data in the window according to the first-in-first-out 

principle based on the timestamp. The sliding window 
maintains the integrity and temporal order of ECG data, which 
provides the basis for subsequent feature extraction and 
analysis based on deep learning models. 

 

 

Fig. 2 Sliding window of ECG data 
 

Fig. 2 shows an example of a sliding window of ECG data. 
In this case, the newly sensed data elements come from the right 
side of the window, and the elements on the left side of the 
window are moved out of the window according to the first-in-
first-out principle. The sliding window contains a total of Ts×n 
time periods of sensed data (i.e., the window size). Ts is the 
sampling period, n is the sampling frequency, each element ej 
in the window is the denoised ECG data sampled at moment j, 
and T is the total duration of ECG data sampling for a patient. 
With the sliding window, the continuous ECG data of a patient 
can be divided into N segments, (2). 

 

1



s

nTT
N s         (2) 

C. Frequency Feature Analysis Based on Wavelet  

For the ECG data after denoising and sliding window 
processing, this paper uses the CWT to convert the ECG data 
into a scalogram which contains the time-frequency domain 
features of the ECG to provide a basis for developing ECG-
based deep learning algorithms. The scalogram is defined as the 
absolute value of the CWT of the signal, which as a function of 
time and frequency [18] can identify the low-frequency and 
fast-changing frequency components of the ECG signal. The 
original ECG data are a one-dimensional vector signal that can 
be converted into a three-channel RGB image by the CWT. 
Compared with the short-time Fourier transform, the CWT can 
provide better temporal localization for short-time, high-
frequency events, and better frequency localization for low-
frequency, long-time events. 

ECG signals have rich information in the time-frequency 
domain. The wavelet coefficients of the CWT can be used to 
locate the different frequency components. The CWT is defined 
as (3): 

 

dt
s

t
tx

s
ssCWT xx )()(

1
),(),(

  
     (3) 

 
x(t) is primary time domain signal, Ψ(t) is wavelet basis, τ and 
s are translation and scale transformation of the wavelet basis. 

Fig. 3 shows the ECG scalogram generated by CWT of a 
segment of ECG data, which contain the time-domain and 
frequency-domain features of the ECG signal of the patient over 
a period of time, which provides a basis for the study of deep 
learning-based auxiliary diagnosis techniques for CHD. 

 

 

Fig. 3 Scalogram image of an ECG data 

III. CHD PREDICTION NETWORK BASED ON ECG SIGNAL  

In this section, ResNet and Bi-LSTM are introduced to 
construct the network architecture for CHD auxiliary diagnosis, 
and the principles and important parameters of ResNet and Bi-
LSTM are introduced. 

A. Architecture of the ECGNet 

The denoised original ECG is converted into ECG scalogram 
by sliding window and CWT, and the features of these 
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scalograms can be extracted using convolutional networks. 
Based on the analysis and comparison of classical 
convolutional neural networks such as LeNet-5 [19], AlexNet 
[20], VGGNet [21], ResNet, and combining the advantages of 
RNN recurrent neural networks in processing continuous 
serialized data, we propose a network architecture oriented to 
ECG feature extraction, namely ECGNet. As shown in Fig. 4, 
ECGNet consists of input layer, ResNet layer, Bi-LSTM layer, 
Fully connected layer, and Softmax layer. 

The input layer denoises the patient's original ECG data and 
generates a multi-segment ECG scalograms through sliding 
window and CWT processing. The ResNet layer consists of 
several convolutional and residual blocks and pooling layers, 
which extracts time-frequency features from multi-segment 
ECG scalograms. After that, the Bi-LSTM layer extracts the N 
segment feature data from the ResNet layer through the 
bidirectional long and short-term memory network. Finally, the 
feature data extracted by ResNet layer and Bi-LSTM layer are 
classified through the Fully connected layer and Softmax layer, 
and the category with the highest probability is output as the 
prediction result. 

 

 

Fig. 4 ECGNet Architecture 

B. ECG Feature Extraction Based on ResNet 

Residual network is a kind of DNN, which is composed of 
multiple residual units. As shown in Fig. 5, each residual unit is 
implemented through a forward neural network and a shortcut 
connection. The core idea is the introduction of residual edge, 
that is, an edge connected directly from the input to the 
operation "⊕", on which h transformation is applied to the 
original input Xi. The residual unit can realize the fusion of 
features at different scales, and the residual network formed by 
it can effectively solve the gradient dispersion and degradation 
problems due to the increasing depth of deep learning network 
[22]. 

The i-th residual unit is shown in Fig. 5, whose input is Xi, F 
is network mapping transformation of input Xi, which can be a 
multilayer perceptron network, can also be a convolutional 
neural network and so on. Xi+1 is the output of the "⊕" 

operation after the F and h transformations of the input Xi, and 
then the activation function f. The residual unit can be 
calculated as (4) and (5): 

 

)),()((1 iiii wxFxhfx          (4) 
 
If the equation h is the identity function, i.e., h(Xi) = Xi; 

According to (4), the features learned from shallow layer l to 
deep layer L can be calculated as (5): 

 

 




1

1
),(

L

i iilL wxFxx            (5) 

 
Experimental analysis proves that when h is the identity 

function, F is the convolutional network, and the activation 
function f is ReLU, the residual network effect is optimal [22]. 
At the same time, a deep network containing hundreds or 
thousands of layers can be formed based on the residual 
network, which can effectively solve the gradient dispersion 
and degradation problems caused by the increasing number of 
layers in the deep learning network and can extract multi-scale 
feature fusion. Therefore, this paper adopts the fusion of 
convolutional network and constant shortcut connection of 
residual units to construct the feature extraction network of 
ECG scalogram. 

 

 

Fig. 5 Residual block 

C. ECG Feature Extraction Based on Bi-LSTM 

ResNet can generate n ECG feature vectors based on the 
sliding window, and there are temporal dependencies between 
these neighboring feature vectors. In this paper, Bi-LSTM is 
introduced to extract these temporal dependencies. As an 
improved recurrent neural network (RNN), Bi-LSTM can solve 
the problem of long distant dependence between data that RNN 
cannot process.  

As shown in Fig. 6, the Bi-LSTM structural model can be 
divided into two independent LSTMS. X1, X2... Xn is the input, 

ℎ௧ሬሬሬ⃗  and ℎ௧ሬ⃖ሬሬ represents the output of forward LSTM and reverse 
LSTM, that is, the output of Bi-LSTM network Hi is the stack 
of forward LSTM and reverse LSTM. The input sequences 
were respectively input into two LSTM neural networks in 
forward and reverse directions for feature extraction, whose 
expressions are shown as (6) and (7): 

 

)],[( 1 whxbfh ttt


          (6) 
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)],[( 1 whxbfh ttt


         (7) 

 

f is the activation function; the output of forward LSTM is ℎ௧ሬሬሬ⃗ ; 

forward bias and weight are the 𝑏ሬ⃗  and 𝑤ሬሬ⃗ ; the output of the 

reverse LSTM neural network is ℎ௧ሬ⃖ሬሬ; and the reverse bias and 

weight are 𝑏⃖ሬ and 𝑤⃖ሬሬ. By splicing forward LSTM neural network 
and reverse LSTM neural network together, the output Ht of Bi-
LSTM neural network can be obtained as (8): 
 

)],([ UhhgcH ttt 


       (8) 

 

g is the activation function; Ht is the output of Bi-LSTM; the 
biases and weights are c and U. The idea of Bi-LSTM model 
design is to make the characteristic data obtained at time t 
contain the information between the past and the future. 
Experimental results show that this neural network model is 
superior to a single LSTM model in feature extraction 
efficiency and performance.  

In this paper, ECGNet adopts a single layer Bi-LSTM 
network architecture to extract the ECG feature vectors fused 
with ECG temporal correlations. These ECG feature vectors 
pass through the subsequent FC layer and Softmax layer to 
classify whether the patient has coronary heart disease.  

 

 

Fig. 6 Structure of Bi-LSTM 
 

IV. IMPLEMENTATION  

In this section, based on the above ECGNet architecture, we 
optimize the ResNet18 residual network and combine Bi-
LSTM to design and implement ECGNet. 

A. Implementation of ResNet 

This paper optimizes the network model of ResNet18 and 
generates the residual network model shown in Fig. 7. This 
model includes 8 residual units, which are composed of 17 
convolution layers and two pooling layers. For the 640x480x3 
ECG scalogram generated by CWT, it was first uniformly 
reduced to 320x240x3 size images as the input of the residual 
network.  

C1 is the first convolution block, the block contains only one 
layer, the kernel size is 7 x7, stride is 2, padding is 3, output 
channel is 64, after passing through C1 layer, the feature vector 
is transformed into dimensions of 64x160 x120. 

S1 is the Max pooling layer, the kernel size is 3x3, stride is 
2, padding is 1, after passing through S1 layer, the feature vector 
is transformed into dimensions of 64x80x60. 

C2 to C5 are convolution blocks with residual structure. 
Every convolution block contains four convolution layers and 
two residual units, every two convolution layers have one 
shortcut links, each convolution layer’s kernel size is 3x3, and 
the padding is 1. C2 convolution block’s stride is 1, output 
channel is 64, after the C2 layer feature vector is still 64x80x60. 
C3 convolution in addition to the first layer’s stride is 2, the rest 
of the stride is 1, the output of the channel is 128, after passing 

through C3 layer, the feature vector is transformed into 
dimensions of 128x40x30. C4 convolution block layer in 
addition to the first layer’s stride is 2, the rest of the stride is 1, 
the output of the channel is 256, after passing through C4 layer, 
the feature vector is transformed into dimensions of 256x20x15. 
C5 in addition to the first layer’s stride is 2, the rest of the stride 
is 1, the output channel number is 512, after passing through C5 
layer, the feature vector is transformed into dimensions of 
512x10x7.  

S2 is an Average pooling layer, after passing through S2 
layer, the feature vector is transformed into dimensions of 
512x1x1. 

Through the above residual network, the input ECG 
scalogram with the size of 320x240x3 is converted into 
512x1x1 feature vectors for subsequent Bi-LSTM network 
processing.  

B. Implementation of Bi-LSTM 

Since the sliding window divides a patient’s ECG data into 
N segments, a patient’s ECG data will generate N dimensions 
of 512x1x1 feature vectors after passing through ResNet. These 
vectors are arranged in the order X1~XN. After a single layer of 
Bi-LSTM, a feature vector v containing the entire ECG data of 
a patient generated. The hidden layer of Bi-LSTM is set to 256, 
and other parameters are default values. After that, 
classification results are output through the Fully connected 
layer and Softmax layer, as in Fig. 8.  
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Fig. 7 Implementation of ResNet 
 

 

Fig. 8 Implementation of Bi-LSTM 
 

C. Loss Function 

The loss function adopted by ECGNet is cross-entropy loss 
function, which is often used in the loss calculation of 
classification problems. It can capture the difference of the 
relative size of prediction probability and further measure the 
performance of different classifiers in a more detailed way The 
cross-entropy loss function can be calculated as (9): 

 

Cjpy
N

N

i ijij ,...2,1,)log(
1

Loss
1

      
(9) 

 
N is the sample number; C is classification number; yij expresses 
the case of a sample i belongs to the sample j, which only has 
two values, 0 or 1; and pij expresses the probability of a sample 
i forecast for the sample j, with value range of [0, 1]. 

V. EXPERIMENT AND ITS ANALYSIS 

In this section, we use MIMIC-3 ECG datasets for network 
training and testing, and analyze the experimental results. 

A. Dataset Preparation 

In this paper, we use PhysioNet's MIMIC-3 (Marketplace for 
Medical Information in Intensive Care) database [23], which is 
a publicly available multiparametric intensive care database 

provided by the Massachusetts Institute of Technology. The 
dataset contains physiological data such as ECG, 
photovolumetric pulse wave signals (PPG), arterial blood 
pressure signals (ABP) and respiratory signals (RESP) 
collected from patients in ICU wards, which has been 
successfully used in several research areas after more than 10 
years of multidisciplinary construction. 

This paper uses ECG data from the matched subset of the 
MIMIC-3 waveform database [24] to predict CHD. This dataset 
uses ICD-9 codes to code for CHD and assigns ICD-9 codes to 
each CHD patient in the MIMIC-3 database. This paper 
randomly selected 1230 patients from the large MIMIC-3 
dataset for the study, of which 406 patients were diagnosed with 
CHD. Data from 904 of the 1230 patients were randomly 
selected for training (which contained 302 patients with CHD), 
100 patients were used for validating (which contained 35 
patients with CHD) and 226 patients were used for testing 
(which contained 69 patients with CHD). 

For the ECG data of 1230 patients, we sequentially 
performed denoising, sliding window, and CWT to generate 
multi-segment ECG scalograms.  

B. Model Evaluation Criteria and Systematic Experiment 

In this paper, accuracy rate, recall rate and F1-score which 
take both accuracy rate and recall rate are used as evaluation 
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indexes of the model, F1-score is shown as (10): 
 

callecision

callecision
F

RePr

RePr2
1 




       
(10) 

 
Precision describes how many of the positive cases predicted 

by the bi-classifier are accurate, which can be calculated as (11). 
And recall describes how many of the true positive cases in the 
test set are selected by the bi-classifier, which can be calculated 
as (12).  TP in (11) and (12) indicates that the real and predicted 
results are positive examples; FP indicates that the true result is 
a negative case and the predicted result is a positive case; and 
FN indicates that the true result is a positive case and the 
predicted result is a negative case. 

 

FPTP

TP
ecision


Pr

        
(11) 

 

FNTP

TP
call


Re

         
(12) 

 
This paper selected a server equipped with Ubuntu operating 

system, which was specifically configured with E5-2620 CPU, 
125 GB memory and TESLA M40 graphics acceleration card. 
This paper used Pytorch and Python to implement ECGNet.  

The training parameters of ECGNet network are as follows: 
60 batches are used, batch size is 16, 70 epoches are run, 
learning rate is 0.001, Adam optimizer is used, cross entropy 
loss function is adopted. The above parameter sets are used as 
inputs to train the model.  

C. Experimental Analysis 

First of all, in order to verify the effect of Butterworth high-
pass filter on denoising, this paper compares the results of the 
ECGNet with and without denoising in the early stage, as 
shown in Table I. The results show that it is necessary to 
introduce Butterworth high-pass filter to filter low frequency 
waveforms.  

 
TABLE I 

COMPARISON RESULTS OF DENOISING OR NOT 

Denoise or not Accuracy Recall F1-score 

Denoise 0.83 0.85 0.83 

Not Denoise 0.72 0.73 0.72 

 

In order to verify the validity of the ECGNet network model 
proposed in this paper, the research group compared the model 
with two traditional machine learning algorithms, K-NN [25] (k 
takes 3) and decision tree, as well as the popular deep learning 
algorithm for medical image classification: VGGNet (9 
convolutional layers, 3 pooling layers and 1 global average 
pooling layer, all of the kernel size is 3x3) and ResNet18, 
ResNet34 and ResNet50, as shown in Table II. The results of 
table show that ECGNet model is significantly superior to these 
models. This may be due to the limited ability of traditional 
machine learning methods such as K-NN and decision tree to 

extract time-frequency features, while deep learning models 
such as VGGNet only rely on convolution, so they cannot 
extract and remember sequential features in ECG data. 
Therefore, the effectiveness of the proposed model combining 
sliding window and Bi-LSTM is proved. 

 
TABLE II 

COMPARISON RESULTS OF DIFFERENT MODELS 

Model Accuracy Recall F1-score

VGGNet 0.63 0.66 0.65 

ResNet18 0.7 0.71 0.7 

ResNet34 0.7 0.68 0.69 

ResNet50 0.66 0.65 0.66 

ECGNet 0.83 0.85 0.83 

K-NN 0.61 0.59 0.6 

Decision Tree 0.58 0.6 0.59 

 

This paper also conducted experimental analysis on the 
sliding window length and step size used for data segmentation, 
and the results are shown in Fig. 9. It can be seen that as the 
window length increases from 20 s to 45 s, the F1-score 
predicted by CHD generally increases first and then decreases, 
among which, the window length reaches the maximum peak at 
30 s. This indicates that the F1-score of CHD prediction is not 
higher with the longer sliding window length, but has an 
optimal state is at 30 s. Too small or too large window length is 
not conducive to feature extraction. After determining the size 
of the sliding window length, this paper analyzed the influence 
of the window step size. The window step size is usually smaller 
than the window length, which causes a partial overlap of active 
data between two adjacent windows. As can be seen from Fig. 
9, with the window step size increasing from 1 s to 25 s, F1-
score of CHD prediction generally increased first and then 
decreased, reaching the peak value at 15 s. Through experiment, 
this paper found that the prediction accuracy of CHD is the 
highest when the window step is half of the window length. 

At the same time, this paper also compared the performance 
of increasing the number of Bi-LSTM layers with the same 
parameter settings as above, as shown in Table III. This 
comparison test is based on the ECGNet, just simply increasing 
the number of Bi-LSTM layers to compare and observe the 
effect of the model with different layers of Bi-LSTM. The table 
shows that the Bi-LSTM model with single layer has better 
results than that with two or three layers. Perhaps because 
single-layer Bi-LSTM is sufficient to memorize ECG data 
temporal dependencies. Therefore, a single-layer Bi-LSTM is 
used in this paper. 

 
TABLE III 

COMPARISON RESULTS OF DIFFERENT BI-LSTM LAYERS 

Layer number Accuracy Recall F1-score 

1 0.83 0.85 0.83 

2 0.79 0.80 0.79 

3 0.75 0.72 0.73 
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Fig. 9 Comparison of different sliding window size and step size 
 

VI. CONCLUSION  

In this paper, we use sliding window, CWT technique to 
extract the ECG time-frequency domain features of CHD 
patients. Then we propose a CHD auxiliary diagnosis model 
ECGNet that fuses ResNet and Bi-LSTM network, through this 
model, the ECG signals of patients can be used for CHD 
auxiliary diagnosis. And this paper conducts experimental 
comparison based on the publicly available MIMIC-3 ECG 
database, the experimental results show that the method is 
better than some traditional image classification methods K-
NN, decision tree, VGGNet, ResNet18, ResNet34 and 
ResNet50. By comparing different sliding window length and 
step size, it is found that setting the sliding window length as 30 
s and step size as 15 s is optimal. And after the comparison of 
increasing the number of Bi-LSTM layers, it was found that 
ECGNet is a better model for CHD auxiliary diagnosis. 

The deep learning CHD auxiliary diagnosis network 
designed in this paper based on ECG data analysis can be 
further improved and refined in subsequent studies. For 
example, although ECG data are an effective mean to CHD, in 
practice, doctors often combine physiological indicators such 
as blood pressure, cholesterol and blood glucose to auxiliary 
diagnosis. Therefore, in the future, the group will study the 
auxiliary diagnostic technique of CHD by integrating ECG with 
other physiological indicators. 

REFERENCES  
[1] Benjamin, E. J. et al. (2019). Heart Disease and Stroke Statistics—2019 

Update: A Report from the American Heart Association. American Heart 
Association, 139, 56–528. 

[2] Kannel, W. B., Castelli, W. P., Gordon, T. & McNamara, P. M. (1971). 
Serum cholesterol, lipoproteins, and the risk of coronary heart disease. 
The Framingham study. Ann Intern Med, 74(1), 1-12. 

[3] Irie, F., Iso, H., Sairenchi, T., Fukasawa, N., Yamagishi, K., Ikehara, S., 
Kanashiki, M. (2006). The relationships of proteinuria, serum creatinine, 
glomerular filtration rate with cardiovascular disease mortality in 
Japanese general population. Kidney Int., 69(7), 1264-71. 

[4] Burchfiel, C. M., Tracy, R. E., Chyou, P. & Strong, J. P. (1997). 
Cardiovascular Risk Factors and Hyalinization of Renal Arterioles at 
Autopsy. Arteriosclerosis, Thrombosis, and Vascular Biology, 17(4), 
760–768. 

[5] Madani, A., Arnaout, R., Mofrad, M., Arnaout, R. (2018) Fast and 
accurate view classification of echocardiograms using deep learning. npj 
Digital Medicine, 1, 6. 

[6] Shi Z X, Gu W L. Exploration of TCM syndrome differentiation of 
coronary heart disease and coronary arteriography (J). Chinese Journal of 
Integrated Traditional & Western Medicine, 2007, 27(1):76. 

[7] Yan Z, Jiang S, Jiao N, et al. The clinical diagnosis effect analysis of 
electrocardiogram (ECG) and ultrasonic cardiogram (UCG) for coronary 
atherosclerotic heart disease (CHD) (J). China Modern Doctor, 2015. 

[8] Jin, Z., Sun, Y., Cheng, A. C. (2009) Predicting cardiovascular disease 
from real-time electrocardiographic monitoring: An adaptive machine 
learning approach on a cell phone. Conf Proc IEEE Eng Med Biol Soc., 
6889-92.  

[9] Wang Z, Ning X, Du G, et al. Nonlinear Dynamical Characteristics of 
ECG Signals of CHD Patients (J). Journal of Naijing University (Natural 
Sciences), 2001. 

[10] Cross D S, Mccarty C A, Hytopoulos E, et al. Coronary risk assessment 
among intermediate risk patients using a clinical and biomarker based 
algorithm developed and validated in two population cohorts (J). Current 
Medical Research & Opinion, 2012, 28(11):1819. 

[11] Meghan, E, Olesnevich, et al. Serum ferritin levels associated with 
increased risk for developing CHD in a low-income urban population. (J). 
Public Health Nutrition, 2012. 

[12] Maryam, Tayefi, Mohammad, et al. hs-CRP is strongly associated with 
coronary heart disease (CHD): A data mining approach using decision tree 
algorithm (J). Computer Methods & Programs in Biomedicine, 2017. 

[13] Karaolis M A, Moutiris J A, Hadjipanayi D, et al. Assessment of the Risk 
Factors of Coronary Heart Events Based on Data Mining With Decision 
Trees(J). IEEE Trans Inf Technol Biomed, 2010, 14(3):559-566. 

[14] Rajeswari K, Vaithiyanathan D V, Amirtharaj D P. A Novel Risk Level 
Classification of Ischemic Heart Disease using Artificial Neural Network 
Technique - An Indian Case Study(J). 2011. 

[15]  Han X, Liang G. Echocardiographic Features of Patients with Coronary 
Heart Disease and Angina Pectoris under Deep Learning Algorithms(J). 
Hindawi Limited, 2021. 

[16] Li Yong, He Zihang, Wang Heng, Li Bohan, Li Fengnan, Gao Ying, Ye 
Xiang. Craftnet: a deep learning ensemble to diagnose cardiovascular 
diseases. Biomed Signal Process Control 2020;62:102091. 

[17] A. E. Awodeyi, S. R. Alty, and M. Ghavami, “Median based method for 
baseline wander removal in photoplethysmogram signals,” in 2014 IEEE 
International Conference on Bioinformatics and Bioengineering. IEEE, 
2014, pp. 311–314. 

[18] Y.-H. Byeon, S.-B. Pan, and K.-C. Kwak, “Intelligent deep models based 
on scalograms of electrocardiogram signals for biometrics,” Sensors, vol. 
19, no. 4, p. 935, 2019. 

[19] Wang, Changhong, Low-Power Fall Detector Using Triaxial 
Accelerometry and Barometric Pressure Sensing (C). IEEE Transactions 
on Industrial Informatics (2016):1-1. DOI:10.1109/TII.2016.2587761. 

[20] Gjoreski, Hristijan, RAReFall — Real-time activity recognition and fall 
detection system (C). IEEE International Conference on Pervasive 
Computing & Communications Workshops IEEE, 2014. 7395664, 
pp.139-145 DOI:10.1109/PerComW.2014.6815182. 

[21]  Koniusz P, Cherian A, Porikli F. Tensor Representations via Kernel 
Linearization for Action Recognition from 3D Skeletons (Extended 
Version) (C). 14th European Conference, ECCV 2016. Vol.9908, pp.37-
53 DOI:10.1007/978-3-319-46493-0_3. 

[22]  He K, Zhang X, Ren S, et al. Deep Residual Learning for Image 
Recognition(C)// 2016 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR). IEEE, 2016. 

[23] A. E. Johnson, T. J. Pollard, L. Shen, L.-W. H Lehman, M. Feng, M. 
Ghassemi et al., “Mimic-iii, a freely accessible critical care database,” 
Scientifific data, vol. 3, no. 1, pp. 1–9, 2016. 

World Academy of Science, Engineering and Technology
International Journal of Biomedical and Biological Engineering

 Vol:18, No:1, 2024 

8International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 B
io

m
ed

ic
al

 a
nd

 B
io

lo
gi

ca
l E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

5.
pd

f



 

 

[24] B. Moody, G. Moody, M. Villarroel, G. Clifford, I. Silva, “Mimic-iii 
waveform database matched subset (version 1.0),” 2020. (Online). 
Available: https://physionet.org/content/mimic3wdb-matched/1.0/ 

[25] Simonyan K, Zisserman A.Very Deep Convolutional Networks for Large-
Scale Image Recognition(J). Computer ence, 2014. 

 

 

World Academy of Science, Engineering and Technology
International Journal of Biomedical and Biological Engineering

 Vol:18, No:1, 2024 

9International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 B
io

m
ed

ic
al

 a
nd

 B
io

lo
gi

ca
l E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
44

5.
pd

f


