**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31821

##### Balancing Neural Trees to Improve Classification Performance

**Authors:**
Asha Rani,
Christian Micheloni,
Gian Luca Foresti

**Abstract:**

**Keywords:**
Neural Tree,
Pattern Classification,
Perceptron,
Splitting
Nodes.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1071178

**References:**

[1] L. Atlas, R. Cole, Y. Muthusamy, A. Lippman, J. Connor, D. Park, M. El-Sharkawi, and R.J. Marks, A performance comparison of trained multilayer perceptrons and trained classification trees. Proceedings of the IEEE, vol. 78(10), pp. 1614-1619, 1990.

[2] G. Deffuant, Neural units recruitment algorithm for generation of decision trees. Proceedings of the International Joint Conference on Neural Networks, San Diego, CA, vol. 1, pp. 637-642, 1990.

[3] G.L. Foresti and T. Dolso, An Adaptive High-Order Neural Tree for Pattern Recognition, IEEE Trans. on Systemas, Man, Cybernatics- part B: Cybernatics, Vol. 34 (2),pp. 988-996, 2004.

[4] G.L. Foresti and C. Micheloni, Generalized Neural Trees for Pattern Classification, IEEE Trans. on Neural Networks, Vol. 13(6), pp. 1540- 1547, 2002.

[5] G. L. Foresti and G. G. Pieroni, Exploiting neural trees in range image understanding, Pattern Recognit. Lett., vol. 19 (9), pp. 869-878, 1998.

[6] M. Kubat, Decision trees can initialize radial-basis function networks. IEEE Transactions on Neural Networks, vol. 9(5), pp. 813-821, 1998.

[7] T. Li, L. Fang, and A. Jennings,. Structurally adaptive self-organizing neural trees. Proceedings of the International Joint Conference on Neural Networks, Baltimore, MD, vol. 3, pp. 329-334, 1992.

[8] R. Lippmann, An introduction to computing with neural nets, IEEE Acoust. Speech Signal Process. Mag.,vol. 4 (2) pp. 4-22, 1987.

[9] P. Maji, Efficient Design of Neural Network Tree using a Single Spilitting Criterion, Nerocomputing, vol. 71, pp. 787-800, 2008.

[10] P. Maji, C. Shaw, N. Ganguly, B.K. Sikdar, P.P. Chaudhuri, Theory and application of cellular automata for pattern classification, Fundamenta Informaticae, vol. 58(34), pp. 321354, 2003.

[11] D. Michie, D.J. Spiegelhalter and C.C. Taylor, Machine Learning, Neural and Statistical Classification, Ellis Horwood, Chichesten, UK, 1994.

[12] S.K. Murthy,S. Kasif, and S. Salzberg, A system for induction of oblique decision trees. Journal of Artificial Intelligence Research,vol. 2, pp. 1- 32, 1994.

[13] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, Los Atlos, CA, 1993.

[14] T.D. Sanger, A tree-structured adaptive network for function approximation in high-dimensional spaces, IEEE Transactions on Neural Networks, vol. 2(2), pp. 285-293, 1991.

[15] A. Sankar, and R.J. Mammone, Optimal pruning of neural tree networks for improved generalization. Proceedings of the International Joint Conference on Neural Networks, Seattle, WA, vol 2, pp 219- 224, 1991.

[16] I.K. Sethi, and J.H. Yoo, Structure-driven induction of decision tree classifiers through neural learning. Pattern Recognition, vol. 30(11), pp. 1893-1904, 1997.

[17] P.E. Utgoff, N.C. Berkman, and J.A. Clouse, Decision tree induction based on efficient tree restructuring. Machine Learning, vol. 29(1), pp. 5-44, 1997.

[18] P.E. Utgoff, and C.E. Brodley, An incremental method for finding multivariate splits for decision trees. Proceedings of the 7th International Conference on Machine Learning, Austin, TX: Morgan Kaufmann, pp. 58-65, 1990.

[19] Z. Zhaou and Z. Chen, Hybrid decision tree, Knowladge based systems, vol. 15(8), pp. 515-528, 2002.