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Abstract—This paper is concerned with the stability problem
with two additive time-varying delay components. By choosing one
augmented Lyapunov-Krasovskii functional, using some new zero
equalities, and combining linear matrix inequalities (LMI)
techniques, two new sufficient criteria ensuring the global stability
asymptotic stability of DNNs is obtained. These stability criteria are
present in terms of linear matrix inequalities and can be easily
checked. Finally, some examples are showed to demonstrate the
effectiveness and less conservatism of the proposed method.

Keywords—Neural networks, Globally asymptotic stability, LMI
approach, Additive time-varying delays.

I. INTRODUCTION

IN the past few decades, neural networks have found
a way into many engineering and scientific areas such as

model identification, optimization problem and pattern
recognition. The existence of time delay may cause
instability and oscillation of neural networks. Since stability
is an important property to many systems, much effort has
been done to analysis the stability problem of of neural
networks with time delay [1-20].

It is known that, according to dependence on the size of
the delays, the stability criteria for delayed neural networks
can be classified into two types: delay-independent stability
criteria [1-3] and delay-dependent stability criteria [4-25].
Generally speaking, the later one has less conservatism than
the former one, especially when the delay size is small
[23,24]. [26] point out that in some situations, signals
transmissions may experience a few segments of networks.
Since the conditions of networks transmission may be
different, it can possibly induce successive delays with
different properties. In [26] the model of neural networks
with two additive time-varying delays. By constructing a new
Lyapunov functional and using a convex polyhedron method
to estimate the derivative of the Lyapunov functional,some
new delay-dependent stability criteria are derived in [27,28].

In this paper, the problem of stability criteria of neural
networks with two additive time-varying delays has been
investigated. By choosing new Lyapunov-Krasovskii
functional which contains some new integral terms and
establishing some new zero equalities, two new sufficient
criteria ensuring the global stability asymptotic stability of
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DNNs is obtained. Finally, some examples are showed to
demonstrate the effectiveness and less conservatism of the
proposed method.

II. PROBLEM STATEMENT

Consider a class of delay neural networks described by the
following equation:

ẋ(t)=−Ax(t)+Bg(x(t))+Dg(x(t−d1(t)−d2(t)))+μ
(1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]
T ∈ Rn is the neuron

state vector. g(x(t)) = [g1(x1(t)), g2(x2(t)), . . . , gn(xn(t))]
T

denotes the neuron activation function, and a constant input
vector μ = [μ1, μ2, . . . , μn]

T .A = diag{ai} with
ai > 0, i = 1, 2, . . . , n. B,D ∈ Rn×n are the connection
weight matrix and the delayed connection weight
matrix,respectively. The following assumptions are adopted
throughout the paper.
Assumption 1: The delay d1(t), d2(t) are time-varying
continuous function and satisfy:

0 ≤ d1(t) ≤ d1, ḋ1(t) ≤ μ1, 0 ≤ d2(t) ≤ d2, ḋ2(t) ≤ μ2.
(2)

where d1, d2 and μ1, μ2 are constants.we denote

d(t) = d1(t) + d2(t), d = d1 + d2, μ = μ1 + μ2 (3)

Assumption 2: Each neuron activation function gi(·), i =
1, 2, . . . , n,in (1) satisfies the following condition:

0 ≤ gi(α)− gi(β)

α− β
≤ li, ∀α, β ∈ R,α �= β (4)

where li, i = 1, 2, . . . , n are constants,and denote matrix
L = diag{li}.
Based on Assumption 1-2, it can be easily proven that there
exists one equilibrium point for (1) by Brouwer‘s fixed-point
theorem. Assuming that x∗ = [x∗

1, x
∗
2, . . . , x

∗
n]

T is the
equilibrium point of (1) and using the transformation
z(·) = x(·) − x∗,system (1) can be converted to the
following system :

ż(t)=−Az(t)+Bf(z(t))+Df(z(t−d1(t)−d2(t))) (5)

where z(t) = [z1(t), z2(t), . . . , zn(t)]
T , f(z(t)) = [f1(z1(t)),

f2(z2(t)), . . . , fn(zn(t))]
T , fi(zi(·)) = gi(xi(·)+x∗

i )−gi(x
∗
i ),

i = 1, 2, . . . , n.
From Eq.(4),fi(·) satisfies the following condition:

0 ≤ fi(α)

α
≤ li, ∀α �= 0, i = 1, 2, . . . , n. (6)
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Lemma 1 [29]. For any constant matrix P = PT > 0 and
0 ≤ h1 < h2 such that the following integrations are well
defined, then

−h12

∫ t−h1

t−h2

xT (s)Px(s)ds≤−(

∫ t−h1

t−h2

x(s)ds)TP (

∫ t−h1

t−h2

x(s)ds)

(7)

where h12 = h1 − h2.
Lemma 2 [30].Let ζ ∈ Rn,Γ = ΓT ∈ Rn×n, and B ∈ Rm×n

such that rank(G) < n. Then, the following statements are
equivalent:

(1) ζTΓζ < 0, Gζ = 0, ζ �= 0,

(2) (G⊥)TΓG⊥ < 0,
(8)

where G⊥ is a right orthogonal complement of G.

III. MAIN RESULTS

In this section,a new Lyapunov functional is constructed
and a less conservative delay-dependent stability criterion is
obtained.
Theorem 1 Given that the Assumption 1-2 hold, the system
(5) is globally asymptotic stability if there exist symmetric

positive definite matrices P,Qi, i = 1, 2, . . . , 7,

[
G11 G12

∗ G22

]
,

Rj , j = 1, 2, . . . , 6,positive diagonal matrices Λ = diag{λi},
T1, T2,and any symmetric matrix S1, i = 1, 2, . . . , n, such that
the following LMIs hold:

(Γ⊥)TΩΓ⊥ < 0 (9)

[
R1 Si

∗ d1

2 R2

]
> 0, i = 1, 2 (10)

[
R3 Si

∗ d2

2 R4

]
> 0, i = 3, 4 (11)

[
R5 Si

∗ d
2R6

]
> 0, i = 5, 6 (12)

where

Γ =
[−A On×6n B D

]

Ω=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 0 R6

2 0 R2

2 0 Ω17 Ω18 Ω19

∗ Ω22 0 0 0 0 0 0 T2L
∗ ∗ Ω33 0 −G12 0 0 0 0
∗ ∗ ∗ Ω44 0 0 0 0 0
∗ ∗ ∗ ∗ Ω55 0 0 0 0
∗ ∗ ∗ ∗ ∗ Ω66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ω77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω88 Ω89

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ω11 = −PA−AP +Q1 +Q3 +Q4 +Q5 +Q6 +Q7

+G11 + d1R1 + d2R3 + dR5 − S1 − S3 − S5

− 1

2
(R2 +R4 +R6) +AT R̄A

Ω17 =
R4

2
+G12

Ω18 = PB −AΛ−AT R̄B + T1L

Ω19 = PD −AT R̄D

Ω22 = −(1− μ)Q1 + S5 − S6

Ω33 = −Q7 −G22 + S6 − R6

2

Ω44 = −(1− μ1)Q3 + S1 − S2

Ω55 = −Q4 −G11 + S2 − R2

2

Ω66 = −(1− μ2)Q5 + S3 − S4

Ω77 = −Q2 +G22 + S4 − R4

2

Ω88 = ΛB +BTΛ +Q2 +BT R̄B − 2T1

Ω89 = ΛD +BT R̄D

Ω99 = −(1− μ)Q2 +DT R̄D − 2T2

R̄ = d21R2 + d22R4 + d2R6

Proof: Construct a new class of Lyapunov functional
candidate as follow:

V (zt) =

4∑
i=1

Vi(zt)

with

V1(zt) = zT (t)Pz(t) + 2
n∑

i=1

λi

∫ zi(t)

0

fi(s)ds

V2(zt) =

∫ t

t−d(t)

(zT (s)Q1z(s) + fT (z(s))Q2f(z(s)))ds

+

∫ t

t−d1(t)

zT (s)Q3z(s)ds+

∫ t

t−d1

zT (s)Q4z(s)ds

+

∫ t

t−d2(t)

zT (s)Q5z(s)ds+

∫ t

t−d2

zT (s)Q6z(s)ds

+

∫ t

t−d

zT (s)Q7z(s)ds

V3(zt) =

∫ t

t−d1

[
z(s)

z(s− d2)

]T [
G11 G12

∗ G22

] [
z(s)

z(s− d2)

]
ds
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V4(zt) =

∫ 0

−d1

∫ t

t+θ

(zT (s)R1z(s) + d1ż
T (s)R2ż(s))ds

+

∫ 0

−d2

∫ t

t+θ

(zT (s)R3z(s) + d2ż
T (s)R4ż(s))ds

+

∫ 0

−d

∫ t

t+θ

(zT (s)R5z(s) + dżT (s)R6ż(s))ds

Then, taking the time derivative of V (t) with respect to t along
the system (5) yield

V̇ (zt) =
4∑

i=1

V̇i(zt)

where

V̇1(zt) = 2zT (t)P ż(t) + 2
n∑

i=1

λifi(zi(t))żi(t)

= 2zT (t)P ż(t) + 2fT (z(t))Λż(t)

(13)

V̇2(zt)≤zT (t)(Q1+Q3+Q4+Q5+Q6+Q7)z(t)

+fT (z(t))Q2f(z(t))− zT (t− d1)Q4z(t− d1)

− (1− μ)zT (t− d(t))Q1z(t− d(t))

− (1− μ)fT (z(t− d(t)))Q2f
T (z(t− d(t)))

− (1− μ1)z
T (t− d1(t))Q3z(t− d1(t))

− (1− μ2)z
T (t− d2(t))Q5z(t− d2(t))

− zT (t− d2)Q2z(t− d2)− zT (t− d)Q7z(t− d)
(14)

V̇3(zt) =

[
z(t)

z(t− d2)

]T [
G11 G12

∗ G22

] [
z(t)

z(t− d2)

]

−
[
z(t− d1)
z(t− d)

]T [
G11 G12

∗ G22

] [
z(t− d1)
z(t− d)

] (15)

V̇4(zt) = zT (t)(d1R1 + d2R2 + dR5)z(t) + ż(t)R̄ż(t)

−
∫ t

t−d1

(zT (s)R1z(s) + d1ż(s)R2ż(s))ds

−
∫ t

t−d2

(zT (s)R3z(s) + d2ż(s)R4ż(s))ds

−
∫ t

t−d

(zT (s)R5z(s) + dż(s)R6ż(s))ds

(16)

Using Lemma 1, we can obtain that

− d1

∫ t

t−d1

żT (s)
R2

2
ż(s)ds ≤

− (z(t)− z(t− d1))
T R2

2
(z(t)− z(t− d1))

(17)

− d2

∫ t

t−d2

żT (s)
R4

2
ż(s)ds ≤

− (z(t)− z(t− d2))
T R4

2
(z(t)− z(t− d2))

(18)

− d

∫ t

t−d

żT (s)
R6

2
ż(s)ds ≤

− (z(t)− z(t− d))T
R6

2
(z(t)− z(t− d))

(19)

The following six zero equalities with any symmetric matrix
Si, i = 1, 2, . . . , 6 are considered:

zT (t)S1z(t)− zT (t− d1(t))S1z(t− d1(t))

−2

∫ t

t−d1(t)

zT (s)S1ż(s) = 0
(20)

zT (t− d1(t))S2z(t− d1(t))− zT (t− d1)S2z(t− d1)

−2

∫ t−d1(t)

t−d1

zT (s)S2ż(s) = 0

(21)

zT (t)S3z(t)− zT (t− d2(t))S3z(t− d2(t))

−2

∫ t

t−d2(t)

zT (s)S3ż(s) = 0
(22)

zT (t− d2(t))S4z(t− d2(t))− zT (t− d2)S4z(t− d2)

−2

∫ t−d2(t)

t−d2

zT (s)S4ż(s) = 0

(23)

zT (t)S5z(t)− zT (t− d(t))S5z(t− d(t))

−2

∫ t

t−d(t)

zT (s)S5ż(s) = 0
(24)

zT (t− d(t))S6z(t− d(t))− zT (t− d)S6z(t− d)

−2

∫ t−d(t)

t−d

zT (s)S6ż(s) = 0
(25)

From (6), we can get that there exist positive diagonal matrices
T1, T2, such that the following inequalities holds:

−2fT (z(t))T1f(z(t)) + 2zT (t)T1Lf(z(t)) ≥ 0 (26)

−2fT (z(t− d(t)))T2f(z(t− d(t)))

+2zT (t− d(t))T2Lf(z(t− d(t))) ≥ 0
(27)

From (13)-(27),we can obtain that

V̇ (zt) ≤ ξT (t)Ωξ(t)−
∫ t

t−d1(t)

[
z(s)
ż(s)

]T [
R1 S1

∗ d1

2 R2

] [
z(s)
ż(s)

]
ds

−
∫ t−d1(t)

t−d1

[
z(s)
ż(s)

]T [
R1 S2

∗ d1

2 R2

] [
z(s)
ż(s)

]
ds

−
∫ t

t−d2(t)

[
z(s)
ż(s)

]T [
R3 S3

∗ d2

2 R4

] [
z(s)
ż(s)

]
ds

−
∫ t−d2(t)

t−d2

[
z(s)
ż(s)

]T [
R3 S4

∗ d2

2 R4

] [
z(s)
ż(s)

]
ds

−
∫ t

t−d(t)

[
z(s)
ż(s)

]T [
R5 S5

∗ d
2R6

] [
z(s)
ż(s)

]
ds

−
∫ t−d(t)

t−d

[
z(s)
ż(s)

]T [
R5 S6

∗ d
2R6

] [
z(s)
ż(s)

]
ds

(28)
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where

ξT (t) = [zT (t), zT (t− d(t)), zT (t− d), zT (t− d1(t)),

zT (t− d1), z
T (t− d2(t)), z

T (t− d2), f
T (z(t)),

fT (z(t− d(t)))]T

By Lemma 2, ξT (t)Ωξ(t) < 0 with Γξ(t) = 0 is equivalent
to (Γ⊥)TΩΓ⊥ < 0.Therefore, if LMIs (9)-(12) hold, we can
obtain V̇ (zt) < 0. then the neural networks (5) is
asymptotically stable. This completes the proof.

Remark 1 Theorem 1 require the upper bound μ1, μ2 of
time-delay d1(t), d2(t) to be known. if μ1, μ2 is unknown,
by setting Q1 = Q2 = Q3 = Q5 = 0 in V2(zt) and
employing same methods in Theorem 1, we can derive the
delay-dependent and delay-derivative-dependent stability
criteria.
Remark 2 It is noted that a novel term V4(zt) is included in
the Lyapunov functional V (zt), which plays an important
role in reducing conservativeness of our results.
Theorem 2 Given that the Assumption 1-2 hold, the system
(5) is globally asymptotic stability if there exist symmetric

positive definite matrices
[
G11 G12

∗ G22

]
, Rj , j = 1, 2, . . . , 6,

P,Q4, Q6, Q7,positive diagonal matrices Λ = diag{λi}, T1,
T2,and any symmetric matrix S1, i = 1, 2, . . . , n, such that
the following LMIs hold:

(Γ⊥)TΦΓ⊥ < 0 (29)

[
R1 Si

∗ d1

2 R2

]
> 0, i = 1, 2 (30)

[
R3 Si

∗ d2

2 R4

]
> 0, i = 3, 4 (31)

[
R5 Si

∗ d
2R6

]
> 0, i = 5, 6 (32)

where

Γ =
[−A On×6n B D

]

Φ=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ11 0 R6

2 0 R2

2 0 Φ17 Φ18 Φ19

∗ Φ22 0 0 0 0 0 0 T2L
∗ ∗ Φ33 0 −G12 0 0 0 0
∗ ∗ ∗ Φ44 0 0 0 0 0
∗ ∗ ∗ ∗ Φ55 0 0 0 0
∗ ∗ ∗ ∗ ∗ Φ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Φ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ88 Φ89

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Φ11 = −PA−AP +Q4 +Q6 +Q7 +G11 + d1R1

+ d2R3 + dR5 − S1 − S3 − S5 +AT R̄A

− 1

2
(R2 +R4 +R6)

Φ17 =
R4

2
+G12, Φ18 = PB −AΛ−AT R̄B + T1L

TABLE I
ADMISSIBLE UPPER BOUND d2 FOR DIFFERENT d1 WITH μ1 = 0.7 AND

μ2 = 0.1.

Method d1 = 0.8 d1 = 1 d1 = 1.2
[26] 0.8831 0.6832 0.4843
[27] 1.5666 1.3668 1.1664
[31] 0.8831 0.6831 0.4831

Theorem 1 2.0214 1.9275 1.7816

TABLE II
ADMISSIBLE UPPER BOUND d1 FOR DIFFERENT d2 WITH μ1 = 0.7 AND

μ2 = 0.1.

Method d2 = 0.8 d2 = 1 d2 = 1.2
[26] 2.1564 1.6464 1.4365
[27] 2.6928 2.2389 2.0639
[31] 1.5831 1.4831 1.3831

Theorem 1 3.0768 2.9013 2.5612

Φ19 = PD −AT R̄D, Φ22 = S5 − S6

Φ33 = −Q7 −G22 + S6 − R6

2
, Φ44 = S1 − S2

Φ55 = −Q4 −G11 + S2 − R2

2
, Φ66 = S3 − S4

Φ77 = −Q2 +G22 + S4 − R4

2

Φ88 = ΛB +BTΛ +Q2 +BT R̄B − 2T1

Φ89 = ΛD +BT R̄D, Φ99 = DT R̄D − 2T2

R̄ = d21R2 + d22R4 + d2R6

Proof: The proof of the Theorem 2 is consequence of
Theorem 1 by choosing Q1 = Q2 = Q3 = Q5 = 0 in V (zt).
Hence the proof is omitted.

IV. EXAMPLE

In this section,we provide a numerical examples to
demonstrate the effectiveness and less conservatism of our
delay-dependent stability criteria.
Example 1 Consider the system (5) with the following
parameters:

A =

[
2 0
0 2

]
, B =

[
1 1
−1 −1

]
, D =

[
0.88 1
1 1

]

f1(s) = 0.4 tanh(s), f2(s) = 0.8 tanh(s), L = diag{0.4, 0.8}.
According to Table I and Table II,we can see that Theorem 1
in our paper can indeed provide much larger admissible upper
bounds than the stability criteria in [26,27,31]. In Table III,
we consider the other case with different d2, unknown μ1, μ2,
according to this Table,we can see this example shows that
the stability condition gives much less conservative results in
this paper.
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TABLE III
ADMISSIBLE UPPER BOUND d1 FOR DIFFERENT d2 WITH UNKNOWN

μ1, μ2 .

Method d2 = 0.8 d2 = 1 d2 = 1.2
Theorem 2 2.3147 2.02160 1.9856

V. CONCLUSION

In this paper, the problem of stability analysis for delayed
neural networks with two additive time-varying delay
components has been investigated. By choosing new
Lyapunov-Krasovskii functional, using some new zero
equalities, and combining linear matrix inequalities (LMI)
techniques, two new sufficient criteria ensuring the global
stability asymptotic stability of DNNs is obtained. Finally,
some examples are given to show the effectiveness of our
obtained criteria.
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