Open Science Index, Computer and Information Engineering Vol:6, No:1, 2012 publications.waset.org/1443.pdf

World Academy of Science,

Engineering and Technology

International Journal of Computer and Information Engineering
Vol:6, No:1, 2012

Concurrency without
Structures used

Locking in Parallel Hash
for Data Processing

Akos Dudas and Sandor Juh

Abstract—Various mechanisms providing mutual exclusion angontinuously expanded when any unknown field cantiesy)

thread synchronization can be used to support Ipagalocessing

within a single computer. Instead of using loclksmaphores, barriers

or other traditional approaches in this paper wai$oon alternative
ways for making better use of modern multithreadechitectures
and preparing hash tables for concurrent accestash structures
will be used to demonstrate and compare two entitifferent
approaches (rule based cooperation and hardwarehmsymization
support) to an efficient parallel implementationings traditional
locks. Comparison includes implementation detagsrformance
ranking and scalability issues. We aim at undeditenthe effects
the parallelization schemes have on the executimir@ament with
special focus on
characteristics.

Keywords—Lock-free synchronization, mutual

parallel hash tables, parallel performance

I. INTRODUCTION

the memory system and memory 8cc

that was encountered on the input. Any existingigjoinput
content was to be replaced by a (short) outputevéthat was
assigned to the key at the first encounter. Theltred the
process was a new data file more fitting for furthecessing
as it carried the same information content as tiginal web
log, but only had a fraction of its size.

For increased efficiency the lookup table was imm@ated
by a custom hash table that only supported insemionew
elements and looking up the values belonging taipeeys
e@o entry modification or table reorganizations evezquired).
For this reason in the further part we focus ouprefon
speeding up these two operations, although it igthwo

exclusion,mentioning that hints for efficient parallel implentations of

the missing operations can be found in [7, 8, 9].
The fact that the hash table is used in data psotgss
relevant for two reasons. First of all, the vastoant of data

PARALLELIZATION is becoming the de-facto solution forthat goes through the hash table forms our goakeoas few
performance enhancement of all types of algorithm#ldirections in the storage structure as possthis; however,

Large scale data processing is a perfect candidiate
parallelization, as the most time consuming stepscete
simple transformations on large amounts of datg. (E]

claims preprocessing to be responsible for 80% rod

execution time of data mining process), thus lise@ce is left
for algorithmic optimizations.

Speeding up an algorithm requires the analysis thed
understanding of the factors that determine itfoperance.
Algorithmic step count, data movement costs, mentaygut
and usage pattern of data structures all play goitant role
in the runtime behavior of an application. Our mabjective
is to offer different methods to make better usevinfespread
state-of-the-art computer architectures that cantaultiple
processors (and/or processor cores) by identifyireg main
performance factors and examining their effectsrwiarious
parallel approaches are applied to solve the samia
transformation problem.

The motivation of this work comes from a large scakb
log processing project [2] which required the rengdof
multiple large data fields with limited domain to raore
compact representation format. The essential otabk was
to build a large lookup table containing up to sal¢éens of
millions of key-value pairs. The code table wasltboin the
fly, that is, the data structure empty in the bagig was

The authors are with the Department of Automatiamd aApplied
Informatics, Budapest University of Technology aftonomics, 1117
Budapest, Magyar tudésok krt. 2. QB-207, Hungarymdil: {akos.dudas,
juhasz.sandor}@aut.bme.hu.

International Scholarly and Scientific Research & Innovation 6(1) 2012 1

clashes with the concept of one of the synchroiuzat
solutions we present. Secondly, the size of thdetabnd
namely, the number of buckets in the table makesute of

t locks unfavorable due to their overhead of consgmin
memory; memory which could be used in the cachesldita
storage instead.

We present and analyze different methods for aligvand
speeding up parallel access to hash tables. Trhastigal
example is used for demonstrating the main idead
outlining the performance effects of the differapiproaches.
Both the aforementioned issues, namely indirectionshe
storage structure, and memory overhead of the |pbzation
solutions will be studied through the performanegaleation
of the methods.

The rest of the paper is organized as follows. énti®n I

dwe identify the performance factors of parallel caithms
running on current desktop architectures and pteseme
recent works using locks in concurrent hash tatgestion IlI
presents our arguments against the use of lockgeireral.
Section IV provides the implementation details loé fock-
free, non-blocking hash table variants that alloevesal
threads to cooperate without using traditional fyanization
mechanisms such as locks, semaphores or barme8edtion
V measurement results are presented and analyze=chtoate
the different implementation approaches. Section VI
summarizes our findings and gives a brief overvigwour
findings.

an

1SN1:0000000091950263

Open Science Index, Computer and Information Engineering Vol:6, No:1, 2012 publications.waset.org/1443.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:6, No:1, 2012

Il. RELATED WORKS

A. Performance Factors of Sequential |mplementations

The most important factor that determines the perémce
of an algorithmic its mathematical complexity. Tipigrticular
aspect is not in our scope now, because hash tablesO (1)
complexity for accessing an item. The access timiadga
constant means that it is independent of the sizg aumber
of elements in the hash table, and with the rigitiae of
parameters (size of the hash table, nearly idest fianction)
the average access path can be kept nearly assl@sangle
step [3].

In data- and memory intensive applications the isécnost
important factor is the memory access charactesisti the
algorithm. Lookup tables require low computationwgo,
their performance is rather dominated by the menaagess
times than the number of instructions completedind the
element corresponding to the key. Current architestbridge
the performance gap between current CPUs and thain

good performance in shared memory multiprocessstess.
More efficient implementation like [8] use a more
sophisticated locking scheme with a smaller nunabdrigher
level locks (allocated for hash table sections udiig
multiple buckets) allowing concurrent searching aeslizing
of the hash table.

Ill. A CASEFORAVOIDING LOCKS

Locks can be implemented purely by software in itheo
however all modern architecture provide hardwarngpstt in
form of atomic bitwisetest-and-set and word-sizecompare-
and-swap operations guaranteeing that no interruption,ror a
other bus operation initiated by other processorsbos
controllers will occur between the read and writartpof
operation. Hardware locking can be used directiyhmugh a
wrapping layer provided by the execution environtnamthe
operating system (providing extra services liketingi queues
or thread state control yielding for other threadtil the
critical section becomes available).

memory by a multilevel cache, thus in practice the The first problem with locks is that since they tre means

performance of data intensive application is alwaysasured
in the number of the slow memory accesses (caclssesi.
[4] was the first to mention the importance of cextwhen
adjusting the parameters of hash tables, whilepfbyide in

of communication between threads and the procedbers
threads execute on, they must always be up-to-daaning
that they cannot be cached. The same memory locaio
periodically updated by various threads forcingpaticessors

detailed study about the cache performance whengusito purge the particular cache line from their cacligne next
various hash functions along with different codisiavoidance time the lock is tested, the data is read from slystem
methods. [10] proposed a method to combine cacleem®ss memory directly resulting in a cache miss. This as

and reliability by grouping buckets into cache $ineln our
previous work [6] we provided an extensive studplaiing
how the structure (memory layout) and parametetbehash
table should be chosen for optimal lookup perforoeamhese
results will be referenced and used during thegmadion of
the implementation details.

B. Parallel Execution and Mutual Exclusion

In parallel environments (such as multi-CPU andtiragdre
systems) further speedup can be achieved by taldagntage
of the execution environment’s capabilities. Premara
sequential algorithm for parallel
approaches. In order to ensure that threads erecuh

parallel provide the same result as the sequeapipfoach, at

some critical points it must be made sure that omlg thread
has access to certain parts of the data structaresaintain
their integrity. This kind of mutual exclusion issually
enforced by the use of locks.

Several parallel
available that use look based synchronization. iglsi hash
table level look can easily become a bottlenecls theveral
method were developed to overcome this difficultgrson et
al. in [11] use two lock levels, there is one glotadle level
lock, and there is one separate lightweight locKldg) for
each bucket. The high level lock is just used feftisg the

bucket level flags and released right afterwardiss €nsures a

fine grained mutual exclusion (concurrent operatioon
bucket level), but needs only one real
implementation. It was shown by [12] that in cagenon-
extensible hash tables simple reader-writer loeksprovide a

International Scholarly and Scientific Research & Innovation 6(1) 2012

executing has ynan

implementations of hash tables a

lock for th

2

important consideration when locks are used; theg a
expensive to check and modify and the cost is heatiss at
all times.

The second problem is the actual level of paralelunder
the surface. The use of locks does not providellplsan; it
does exactly the opposite. Threads are forced ibifnemother
one is still working the critical section. The thds can wait
actively (i.e. continuously polling the state ofetlocks by
spin-waiting) or passively giving up their timecdiuntil the
lock becomes available. Either solution has additiccosts,
such as wasting computing power by active waitiog,
involving the operating system scheduler in theeptiase.

The amount of time lost at waiting can be reducgd b
creating multiple finer-grained critical regions. dase of hash
tables this means that instead of locking the wiaklde we
apply the lock on smaller regions of an open habket or on
bucket or bucket groups of a bucket hash tablendxaber of
locks increases collisions become less and lesbkapte,

E)Gfoviding better performance and scalability. Utioately

using high number of locks is often not supportgdhe run-

time environment (we may just have a few thousagnalsy
they have a relatively large memory footprint. Evewe use

only one bit, we cannot create an array of locksahse of the
effect of “false sharing.” False sharing hints ba shared use
of the same cache line by multiple independentdpegkhere

the modification of one lock will not only effedtdt single bit,

but it will purge all other unrelated neighboringsh(for a 64

yte long cache line 511 other locks) form the eaoh the
concurrent processors. We can solve this probleasbigning
a complete cache line to each lock, or mergingldlok with

1SN1:0000000091950263

Open Science Index, Computer and Information Engineering Vol:6, No:1, 2012 publications.waset.org/1443.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

Vol:6, No:

data items (adding one extra byte for each lock$ #preading

1, 2012

Another import factor for good performance is stemarch

locks all over the memory resulting in higher meynorpath. This can be guaranteed by a uniform hashtiitmend

allocation.

the right choice of the table size. Although thisk table is a

In general all lock-based algorithms suffer frome thkind of bucket hash implementation the average éuskze

drawbacks of blocking synchronization such as duzkd],
long and undefined delays and priority inversionsiclv is
especially true when using extensible hash talles [

Using locks is not really convenient: threads camdér the
execution of each other, extra memory is requirddta
structure should be reorganized (to place the laok)in cases
of unfortunate implementations the interaction ofiltiple
locks can stall the whole processing (deadlockasitns). A
great amount of research efforts has been madehén
literature to develop non-blocking synchronizatiorethods.
In the following section we present two ideas thiae a kind
of workaround of the lock-based mutual exclusiortipalarly
applicable to hash tables.

IV. IMPLEMENTING A CONCURRENTHASH TABLES

This section presents the concurrent implementatadrthe
hash table. We start from a single threaded, opéthvariant,
which then will be altered according to three didfet
parallelization schemes: traditional mutual exausiwith
locking, lock-free with hardware atomic operatioasd lock-
free rule-based cooperation.

A. Optimized Hash Table

Parallel performance optimization begins with atirojzed
sequential hash table. As discussed in detail oti@ell the
performance
characteristics. Multiple works as well as our eigreces [5,
6, 10, 11] show that the number cache misses irséaech
path should be a primary concern. We have foundh#&j the
best choice in this case is a hash structure tlas o
indirections for storing the items if there is nallision (see
Fig.1). This is a bucket hash table using chaifimgesolving
collisions. The most important benefit of this sture is that
the first item in each bucket can directly be aseds (This
property will be relevant when discussing the CAfuitson in
Section IV.C.)

hash tablz body

key | ptr | walue |—= key | ptr| walus

key | ptr | walue |—= key | ptr| walue _;.| kE\,rl ptr | \raluel
key | ptr | walue

key | ptr| walue || key | ptr| value

key | ptr| walue |5 key | ptr| walue _,| kE\,rl ptr | \raluel

Fig. 1 Memory layout of hash table we use

Each item consists of the key, a pointer to the iter, and
the stored value associated with the particulametd. The
key and the pointer are placed next to each othéndrease
the chance of being in the same cache line beakfidien
following the bucket chain. The hash table bodgadsnpact,
no cache line alignment or padding is used to rednemory
footprint.

International Scholarly and Scientific Research & Innovation 6(1) 2012 3

should be kept as low as 1, which is achieved lmpsimg the
size of the hash table about 20-40% bigger, thamtimber of
items it should hold. In this working point the coact
structure functions rather like an open key haditetavith

special list-based collision avoidance mechanism.

B. Traditional Locking

Little effort is required for a simple locking
implementation. A single table-level lock suffictBnsolves
the concurrency problem, but it basically seriaizall
accesses to the table easily resulting in perfoomaloss
instead of gain. On the other hand using too mankd (i.e.
one for each bucket) it is a waste of memory sp&eee place
a lock to each bucket, than threads only collidenvtrying to
access the same bucket at once (practically nebeit)we
have to maintain tens of millions of locks in themory.

Based on previous research [8, 11, 12] and verligdur
experiments region locks are the best choice. Wselo set
up 1024 locking regions (Fig.3.a) from consecutiash table
items.

C.CAS Based Implementation

Lock free parallel implementations usually use atom
compare-and-swap (CAS) operations instead of ekplic
locking. This method is founded on the fact thatnabdern

is significantly affected by the memorgomputer architectures provide hardware supportatomic

combined read-write operations (e.g. the CMPXCHG
instruction in thex86architecture) that allow theonn
destructive manipulation of a single machine wohe. basic
idea is that we should construct algorithms wheresi
sufficient to manipulate a single machine word tbiave the
necessary result. In practice the manipulated vislaepointer
(which has the length of one machine word), thuthin first
step we create the composite data structure inntemory
according to the current situation, than we tryntove it in
place with the conditional CAS operation. If thengmre
condition does not hold true anymore (the memonation
has been modified by another thread) than the spapations
fails. We adapt the structure to the new conditod we try
the insertion again.

With this method complete lock-free data structuaesl
algorithms can be build, as it was done with linKistl by
Michael in [12], whose works was further extended
resizable hash tables by in [9].When creating a ®aSed
implementation (see Fig. 3.b) the data structureipudation
consist of a series of pointer adjustments. F®& thason we
have to modify the data structure we use (see BigThis
works exactly the same way as the previous vaggoept for
the data items not being embedded into the bodhehash
table.This extra indirection in the structure ckstwith our
goal to store the items accessible without indioecfrom the
table body, and is expected to be accountablerfon@eased
number of cache misses.

—

1SN1:0000000091950263

Open Science Index, Computer and Information Engineering Vol:6, No:1, 2012 publications.waset.org/1443.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:6, No:1, 2012

hash tabla bodw
ptr y| key | ptr| value
ptr » key | ptr | wslus —)-l kE\,rl ptrl value |
ptr
ptr »| key | ptr| walue
ptr key | ptr | walue —;I kE\,rl ptrl value |

Fig. 2 Memory layout of hash table adopted to betlusith CAS

The main advantage of this approach is high sdélabi
using hardware supported optimistic concurrencydhiag,
while its price is the development effort put ifbeding and
implementing an algorithm which produces the rigbgults
with applying the pointer manipulations one by dnethe
right order. When using this approach we exped lesiting
due to the omission of locks, but at a cost oféased cache
misses that originate from the memory layout maodiibn
required.

D. Rule-Based Cooperation

The last method for implementing a lock-free hasbld is
what we callrule-based cooperation. The main idea is to do a
kind a reverse work allocation compared to theitiatal lock
based scenario where each thread is capable ofitexg@ny
task and while doing so they protect their workarga with
lock to avoid the interference with other tasksthae reverse
case we specialize our threads by assigning inag@Vievork
areas to them that do not overlap (separate fumstipipeline
stages, spatial domains or graph branches). In dage a
specific service requests can be served by justlmeed, and
it is up to the right selection of domains to pdwvithe load
balancing.

The selection rules are usually based on data deasition
as functional decomposition generally does not iplevree
scalability and we easily reface the problem dical sections
on the level of organizing the control. According our
knowledge this kind of cooperation is never mergin the
literature of shared memory algorithms, but theaide not
unknown in distributed systems, where there lowt sbsared
memory synchronization is not available, thus tloarser
grained cooperation between the nodes is maintaimed
directed point-to-point messages or implicit wollogation
rules (e.g. distributed file servers, horizontaibrtitioned data
bases, documents groups allocated to separateemed s).

b)
LLLL-]
T ~(th2)
R
)@_ %m
m

Pzl

7 aaaaa
pd

Fig. 3 Concurrent hash table implementation: ahhabkle with
section locks, b) CAS based cooperation, and e}vaked task
separation

The threads share a common input and output regiich
can be addressed directly (with the index of thuiror the
output element). Each threads reads each inputeate(mo
locking is needed, this is just a read only acéessveryone)
and based on a rule they decide whether to protiess
specific element or to move to the next one (FigRi®. The
rule is constructed in such a way that it choosextty one
thread for processing the element, and that thréad
responsible for creating the output (no lockinguiesd as
writing as each element is written by one singtedh).

In practice withn threads the original hash table is divided In the case of lookup tables the rule should besitonted

into n regions (sub-hash tables, see Fig. 3.c) where thaehd
is responsible for exactly one region. As the ttrésa the
owner of its region no locking is required, as mbpelse is
allowed to reach the data inside.

International Scholarly and Scientific Research & Innovation 6(1) 2012 4

in a way that ensures the elements with the sameakeays
go to the same thread. In our implementation wel asgimple
modulo n rule, which was applied the hash functbthe key
(the same hash function is used as the one usiele itie sub-
hash tables for placing the elements). That ithedfthreads are
numbered between 0 amdl then threadn (0 <m<n) selects
itself for processing ithash (key) mod n equals tom. We
should use complex hash functions in both the eater
decision and the internal placement as we seefrforiding a
highly uniform load distribution between the thresadnd
between the table slots as well. The advantagdadfirsy the

1SN1:0000000091950263

Open Science Index, Computer and Information Engineering Vol:6, No:1, 2012 publications.waset.org/1443.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:6, No:1, 2012

same hash function is that it needs to be calalletdy once

What we are interested in is on one hand the petoce

when handling an item. The complex external degisiowhich is measured in terms of operations (lookiwg®it) per

function has its disadvantage as well as all thseaeed to
calculate it for each item just to find out whetiebelongs to
their scope or not. We expect to see higher instmucount
on behalf of this approach.

In the case of rule based workload distributiorrehis no
need for locking neither at software nor at hareéwlavel, no
special instruction are required, no additional heaenisses
appear and implementation is relatively simple.sEheenefits
come at the cost of increased computation as hthhas to
apply the rule to all items which
synchronization overhead farl out of then threads.

V. MEASUREMENTSAND RESULTS

millisecond (the higher the better) and the redsehind the
performance differences. We measure the number
operations per 1000 CPU instructions and number
operations for each dozen cache misses. The saatesf
practical choice for the visibility. Both are betighen higher
(i.e. more lookups completed by the same numbe€RU
instructions).

of
of

The lock-based solution and the CAS method have the

peak performance at 8 threads achieving 2.9 anél.2%

is just a kind ofspeedup over the baseline while the cooperatiomadeis at

its the best with 7 threads with a speedup of 253-2
The lock-based solution dominates the lock-freaittmhs
up to about 8 concurrent threads, which is exab#gynumber

In this section we compare the performance of abovg (virtual) cores in the CPU.

mentioned three implementation types (high-levettiea
lock, CAS, rule-based co-operation) consideringfedént
number of threads and various workload types.

The measurements were executed on an Intel Cd260@-

The CAS solution has mostly the same performance. W

also see that it increased cache miss count (taetpns per
10 cache misses is lower) which is due to the ertiaection
in the data structure. It also has the best ingtmccount

CPU (3.6 GHz, 4 core and Hyper Threading) with 8 GRjocks do spin-waiting consuming instructions, ocerion
system memory and Windows 7 operating system. & h cajculates more hash functions). The biggest gairthi

tables and every locking mechanism were implemeiied

scalability.

C++ with careful manual optimization and compile¢ b The cooperation solution behaves unevenly witheckifit

Microsoft Visual Studio 2010 in default releaselthunode.

Each test scenario reports the average of 5 exasutive
measured the execution time, the number of lasl leache
misses (8 MB L3 cache shared by all cores) andtimeber of
executed instructions.

The first type of workload (see Figure 4) has 50%eit and
50% lookup operations, while the second (see Fighire
consists of 10% insert and 90% lookup operatioR¢ease

number of threads, which is due to the implicitddelancing

of the chosen hash function which performs the data

decomposition. It has the worst utilization of CRigtructions
(lowest count of lookups/inserts completed by trame
amount of CPU instructions). Since the hash functis
calculated by all threads, it goes to waste forbali one of
them. It also seems that this solution is not yealche
friendly. Since the threads are not controlled yarchironized

note thatoperations in this context are searches/inserts in thg seems that they have uneven loads and work ffereint

table, while thénstructions are executed by the CPU).

baseline section lock == CAS e=mmcooperation

operations

regions of the system memory, which puts more rstoai the
system.

M operations/msec M op/instruction M op/cache miss

per msec operations operation / 1000 instruction
per msec operation /10 cache miss
30000 30000 10
27000 27000 9
24000 24000 8
21000 7
21000 18000 6
18000 15000 5
15000 12000 4
12000 9000 3
9000 6000 2
3000 1
6000
0 0
3000 RO @ & & Q
& = & 5 =
0 T T T T T T T T T 0 [&s ,;)&\0 O & ,}\0
1 2 3 4 5 6 7 8 9 10 11 12 & & & &
& & & &

threads

Fig. 4 Operations per millisecond for various numiifethreads using the four different schemes)(leftd the same for 2 and 8 threads with

the corresponding number of operations per insomstand cache misses (right). The workload cow$iS0% insert and 50% lookup
operations

International Scholarly and Scientific Research & Innovation 6(1) 2012 5

1SN1:0000000091950263

Open Science Index, Computer and Information Engineering Vol:6, No:1, 2012 publications.waset.org/1443.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:6, No:1, 2012

operations baseline section lock == CAS cooperation M operations/msec M op/instruction M op/cache miss
per msec operations operation / 1000 instruction
per msec operation /10 cache miss
30000 30000 10
27000 27000 9
24000 24000 8
21000 21000 7
18000 6
18000 15000 5
15000 12000 4
12000 9000 3
9000 6000 2
6000 3000 1
0 0
3000 Q@ @ @ & @
0 <)al S © s)
T T T T T T T T T O (@) R O C R
1 2 3 4 5 6 7 8 9 10 11 12 & & R &
(9 () 9 9
o & & &

threads

Fig. 5 Operations per millisecond for various numiifethreads using the four different schemes)(leftd the same for 2 and 8 threads with
the corresponding number of operations per insomstand cache misses (right). The workload cori0% insert and 90% lookup
operations

VL.

This paper presented two lock-free implementatfrisash
tables. Our hypothesis is that locking solutiong arot
practical, since they have limited applicabilityofstraint on
the number of locks), require invasive modificatiof the
algorithms (placement of the locks, memory condern
threads can hinder each other’s performance, asity,ldt is
prone to faulty or crashed threads.

It can be said that really good performance caadigeved
with locks, but it must also be taken into considien that the
locks we used are implemented as assembly lewvstdiitand-
set based solutions allowing for very low overheaud
unlimited number of locks. The use of locks alseéeptally
hinders executing, while lock-free solutions areajpable of
causing deadlocks.

The lock-free solutions this paper examined inctude
well-known technique of using the CAS primitive, iain
provides a good alternative to locking, but reqdiickanges in
the storage structure, which causes more cachessnssd
results in more complex algorithm where extra méatatzor
was put into the implementation and verificatiomeTbiggest
advantage of this approach is its scalability.

The rule-based cooperation with data decomposigoan
idea borrowed from distributed systems and appgleshared
memory parallel algorithms. The performance of #pproach
is limited by the increased amount of instructiatisthreads
need to perform redundantly, but has a nice feabfileeing
applicable without any modification to the algonits and data
structures.

CONCLUSION

ACKNOWLEDGMENT

This project is supported by the New Hungary Depeient
Plan (Project ID: TAMOP-4.2.1/B-09/1/KMR-2010-0002)

International Scholarly and Scientific Research & Innovation 6(1) 2012 6

a1

REFERENCES

S. Ansari, R. Kohavi, L. Mason, and Z. Zheng, “breting E-

Commerce and Data Mining: Architecture and Chakexjgin IEEE

International Conference on Data Mining, 2001,2p34.

S. Juhész, and R. Ivancsy,“Tracking Activity of Realividuals in Web

Logs,"International Journal of Computer Science, Vol. 2, No. 3, pp.

172-177, 2007.

W. Litwin,"“Linear hashing: A new tool for file antble addressing,” In

Proceedings of the Sixth International Conferencé/ery Large Data

Bases, New York, pp. 212-223, 1980.

M. Mitzenmacher,"Good Hash Tables & Multiple HasinEtions,” Dr.

Dobbs Journal, No. 336, pp. 28-32, May 2002.

G. L. Heileman and W. Luo,"How caching affects hagti In

Proceedings of the 7th Workshop on Algorithm Engiiteg and

Experiments, Vancouver, Canada, pp. 141-154, 2005.

S. Juhasz and A. Dudéas, “Optimising Large Hash ésalfbr Lookup

Performance,” In proceedings of the IADIS Interaatil Conference

Informatics 2008, Amsterdam, The Netherlands, pF-114, 2008.

M. Greenwald, “Two-handed emulation: How to buildnrblocking

implementations of complex data-structures using ABC In

Proceedings of the 21st ACM Symposium on PrincipieBistributed

Computing. ACM, New York, pp. 260-269, 2002.

D. Lea, “Hash table util.concurrent.ConcurrentHaslplrevision 1.3, in

JSR-166, the proposed Java Concurrency Package™03,20

http://gee.cs.oswego.edu/cgi-

bin/viewcvs.cgi/jsr166/src/main/java/util/concurten

[9] ©. Shalev and N. Shavit, “Split-ordered lists: Ldoke extensible hash
tables,Journal of the ACM 53(3): pp. 379-405, 2006.

[10] A. Sachedina, M. A. Huras and K. K. Romanufa,“Rekie cache
sensitive hash table,” US Patent number: 70859103 2

[11] P.-A. Larson, M. R. Krishnan,and G. V. Reilly, “$eable hash table for
shared-memory multiprocessor system,” US Patentbeun6578131,
2003.

[12] M. M. Michael, “High performance dynamic lock-frémash tables and

list-based sets,” In Proceedings of the 14th An#@i1 Symposium on

Parallel Algorithms and Architectures, ACM, New ¥pmp. 73-82,

2002.

(1]

(2]

[4]
(5]

(6]

(71

(8]

1SN1:0000000091950263

