Search results for: alcohol/ether fuel
582 Simulation on Fuel Metering Unit Used for TurboShaft Engine Model
Authors: Bin Wang, Hengyu Ji, Zhifeng Ye
Abstract:
Fuel Metering Unit (FMU) in fuel system of an aeroengine sometimes has direct influence on the engine performance, which is neglected for the sake of easy access to mathematical model of the engine in most cases. In order to verify the influence of FMU on an engine model, this paper presents a co-simulation of a stepping motor driven FMU (digital FMU) in a turboshaft aeroengine, using AMESim and MATLAB to obtain the steady and dynamic characteristics of the FMU. For this method, mechanical and hydraulic section of the unit is modeled through AMESim, while the stepping motor is mathematically modeled through MATLAB/Simulink. Combining these two sub-models yields an AMESim/MATLAB co-model of the FMU. A simplified component level model for the turboshaft engine is established and connected with the FMU model. Simulation results on the full model show that the engine model considering FMU characteristics describes the engine more precisely especially in its transition state. An FMU dynamics will cut down the rotation speed of the high pressure shaft and the inlet pressure of the combustor during the step response. The work in this paper reveals the impact of FMU on engine operation characteristics and provides a reference to an engine model for ground tests.
Keywords: Fuel metering unit, stepping motor, AMESim/MATLAB, full digital simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192581 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles
Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi
Abstract:
Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.Keywords: Artificial neural networks, fuel consumption, machine learning, regression, statistical tests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827580 Evaluating Alternative Fuel Vehicles from Technical, Environmental and Economic Perspectives: Case of Light-Duty Vehicles in Iran
Authors: Vahid Aryanpur , Ehsan Shafiei
Abstract:
This paper presents an environmental and technoeconomic evaluation of light duty vehicles in Iran. A comprehensive well-to-wheel (WTW) analysis is applied to compare different automotive fuel chains, conventional internal combustion engines and innovative vehicle powertrains. The study examines the competitiveness of 15 various pathways in terms of energy efficiencies, GHG emissions, and levelized cost of different energy carriers. The results indicate that electric vehicles including battery electric vehicles (BEV), fuel cell vehicles (FCV) and plug-in hybrid electric vehicles (PHEV) increase the WTW energy efficiency by 54%, 51% and 46%, respectively, compared to common internal combustion engines powered by gasoline. On the other hand, greenhouse gas (GHG) emissions per kilometer of FCV and BEV would be 48% lower than that of gasoline engines. It is concluded that BEV has the lowest total cost of energy consumption and external cost of emission, followed by internal combustion engines (ICE) fueled by CNG. Conventional internal combustion engines fueled by gasoline, on the other hand, would have the highest costs.Keywords: Well-to-Wheel analysis, Energy Efficiency, GHG emissions, Levelized cost of energy, Alternative fuel vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748579 Assessment of Sediment Remediation Potential using Microbial Fuel Cell Technology
Authors: S. W. Hong, Y. S. Choi, T. H. Chung, J. H. Song, H. S. Kim
Abstract:
Bio-electrical responses obtained from freshwater sediments by employing microbial fuel cell (MFC) technology were investigated in this experimental study. During the electricity generation, organic matter in the sediment was microbially oxidized under anaerobic conditions with an electrode serving as a terminal electron acceptor. It was found that the sediment organic matter (SOM) associated with electrochemically-active electrodes became more humified, aromatic, and polydispersed, and had a higher average molecular weight, together with the decrease in the quantity of SOM. The alteration of characteristics of the SOM was analogous to that commonly observed in the early stage of SOM diagenetic process (i.e., humification). These findings including an elevation of the sediment redox potential present a possibility of the MFC technology as a new soil/sediment remediation technique based on its potential benefits: non-destructive electricity generation and bioremediation.Keywords: Anaerobic oxidation, microbial fuel cell, remediation, sediment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037578 Development of Motor and Controller for VVA Module of Gasoline Vehicle
Authors: Joon Sung Park, Jun-Hyuk Choi, Jin-Hong Kim, In-Soung Jung
Abstract:
Due to environmental concerns, the recent regulation on automobile fuel economy has been strengthened. The market demand for efficient vehicles is growing and automakers to improve engine fuel efficiency in the industry have been paying a lot of effort. To improve the fuel efficiency, it is necessary to reduce losses or to improve combustion efficiency of the engine. VVA (Variable Valve Actuation) technology enhances the engine's intake air flow, reduce pumping losses and mechanical friction losses. And also, VVA technology is the engine's low speed and high speed operation to implement each of appropriate valve lift. It improves the performance of engine in the entire operating range. This paper presents a design procedure of DC motor and drive for VVA system and shows the validity of the design result by experimental result with prototype.
Keywords: DC motor, Inverter, VVA, Electric Drive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593577 Hazard Contributing Factors Classification for Petrol Fuel Station
Authors: Mirza Munir Ahmed, S.R.M. Kutty, Mohd Faris Khamidi, Idris Othman, Azmi Mohd Shariff
Abstract:
Petrol Fuel Station (PFS) has potential hazards to the people, asset, environment and reputation of an operating company. Fire hazards, static electricity air pollution evoked by aliphatic and aromatic organic compounds are major causes of accident/incident occurrence at fuel station. Activities such as carelessness, maintenance, housekeeping, slips trips and falls, transportation hazard, major and minor injuries, robbery and snake bites has a potential to create unsafe conditions. The level of risk of these hazards varies according to location and country. The emphasis on safety considerations by the government is variable all around the world. Developed countries safety records are much better as compared to developing countries safety statistics. There is no significant approach available to highlight the unsafe acts and unsafe conditions during operation and maintenance of fuel station. Fuel station is the most commonly available facilities that contain flammable and hazardous materials. Due to continuous operation of fuel station they pose various hazards to people, environment and assets of an organization. To control these hazards, there is a need for specific approach. PFS operation is unique as compared to other businesses. For smooth operations it demands an involvement of operating company, contractor and operator group. This study will focus to address hazard contributing factors that have a potential to make PFS operation risky. One year data collected, 902 activities analyzed, comparisons were made to highlight significant contributing factors. The study will provide help and assistance to PFS outlet marketing companies to make their fuel station operation safer. It will help health safety and environment (HSE) professionals to arrest the gap available related to safety matters at PFS.Keywords: Accident, Contributing factors, carelessness, fire, explosion, injuries.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7381576 Influence of Surface Area on Dissolution of Additively Manufactured Polyvinyl Alcohol Tablets
Authors: Seyedebrahim Afkhami, Meisam Abdi, Reza Baserinia
Abstract:
Additive manufacturing is revolutionizing production in different industries, including pharmaceuticals. This case study explores the influence of surface area on the dissolution of additively manufactured polyvinyl alcohol parts as a polymer candidate. Specimens of different geometries and constant mass were fabricated using a Fused Deposition Modeling (FDM) 3D printer. The dissolution behavior of these samples was compared with respect to their surface area. Improved and accelerated dissolution was observed for samples with a larger surface area. This study highlights the capabilities of additive manufacturing to produce samples of complex geometries that cannot be manufactured otherwise to control the dissolution behavior for pharmaceutical and biopharmaceutical applications.
Keywords: Additive manufacturing, polymer dissolution, fused deposition modelling, geometry optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190575 Nafion Nanofiber Composite Membrane Fabrication for Fuel Cell Applications
Authors: C. N. Okafor, M. Maaza, T. A. E. Mokrani
Abstract:
A proton exchange membrane has been developed for direct methanol fuel cell (DMFC). The nanofiber network composite membranes were prepared by interconnected network of Nafion (perfuorosulfonic acid) nanofibers that have been embedded in an uncharged and inert polymer matrix, by electro-spinning. The spinning solution of Nafion with a low concentration (1 wt% compared to Nafion) of high molecular weight poly(ethylene oxide), as a carrier polymer. The interconnected network of Nafion nanofibers with average fiber diameter in the range of 160-700nm, were used to make the membranes, with the nanofiber occupying up to 85% of the membrane volume. The matrix polymer was crosslinked with Norland Optical Adhesive 63 under UV. The resulting membranes showed proton conductivity of 0.10 S/cm at 25°C and 80% RH; and methanol permeability of 3.6 x 10-6 cm2/s.
Keywords: Composite membrane, electrospinning, fuel cell, nanofibers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2914574 Experimental Comparison of Combustion Characteristic and Pollutant Emission of Gas Oil and Biodiesel
Authors: S. Baghdar Hosseini, K. Bashirnezhad, A. R. Moghiman, Y. Khazraii, N. Nikoofal
Abstract:
The increasing industrialization and motorization of the world has led to a steep rise for the demand of petroleum-based fuels. Petroleum-based fuels are obtained from limited reserves. These finite reserves are highly concentrated in certain regions of the world. Therefore, those countries not having these resources are facing energy/foreign exchange crisis, mainly due to the import of crude petroleum. Hence, it is necessary to look for alternative fuels which can be produced from resources available locally within the country such as alcohol, biodiesel, vegetable oils etc. Biodiesel is a renewable, domestically produced fuel that has been shown to reduce particulate, hydrocarbon, and carbon monoxide emissions from combustion. In the present study an experimental investigation on emission characteristic of a liquid burner system operating on several percentage of biodiesel and gas oil is carried out. Samples of exhaust gas are analysed with Testo 350 Xl. The results show that biodiesel can lower some pollutant such as CO, CO2 and particulate matter emissions while NOx emission would increase in comparison with gas oil. The results indicate there may be benefits to using biodiesel in industrial processes.
Keywords: Biodiesel, combustion, gas oil, pollutant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355573 Enhanced Photocatalytic Hydrogen Production on TiO2 by Using Carbon Materials
Authors: Bashir Ahmmad, Kensaku Kanomata, Fumihiko Hirose
Abstract:
The effect of carbon materials on TiO2 for the photocatalytic hydrogen gas production from water / alcohol mixtures was investigated. Single walled carbon nanotubes (SWNTs), multi walled carbon nanotubes (MWNTs), carbon nanofiber (CNF), fullerene (FLN), graphite (GP), and graphite silica (GS) were used as co-catalysts by directly mixing with TiO2. Drastic synergy effects were found with increase in the amount of hydrogen gas by a factor of ca. 150 and 100 for SWNTs and GS with TiO2, respectively. Moreover, the increment factor of hydrogen production reached to 180, when the mixture of SWNTs and TiO2 were smashed in an agate mortar before photocatalytic reactions. The order of H2 gas production for these carbon materials was SWNTs > GS >> MWNTs > FLN > CNF > GP. To maximize the hydrogen production from SWNTs/TiO2, various parameters of experimental condition were changed. Also, a comparison between Pt/TiO2, SWNTs/TiO2 and GS/TiO2 was made for the amount of H2 gas production. Finally, the recyclability of SWNTs/TiO2or GS/TiO2 was tested.
Keywords: Photocatalysis, carbon materials, alcohol reforming, hydrogen production, titanium oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3984572 Revival of the Modern Wing Sails for the Propulsion of Commercial Ships
Authors: Pravesh Chandra Shukla, Kunal Ghosh
Abstract:
Over 90% of the world trade is carried by the international shipping industry. As most of the countries are developing, seaborne trade continues to expand to bring benefits for consumers across the world. Studies show that world trade will increase 70-80% through shipping in the next 15-20 years. Present global fleet of 70000 commercial ships consumes approximately 200 million tonnes of diesel fuel a year and it is expected that it will be around 350 million tonnes a year by 2020. It will increase the demand for fuel and also increase the concentration of CO2 in the atmosphere. So, it-s essential to control this massive fuel consumption and CO2 emission. The idea is to utilize a diesel-wind hybrid system for ship propulsion. Use of wind energy by installing modern wing-sails in ships can drastically reduce the consumption of diesel fuel. A huge amount of wind energy is available in oceans. Whenever wind is available the wing-sails would be deployed and the diesel engine would be throttled down and still the same forward speed would be maintained. Wind direction in a particular shipping route is not same throughout; it changes depending upon the global wind pattern which depends on the latitude. So, the wing-sail orientation should be such that it optimizes the use of wind energy. We have made a computer programme in which by feeding the data regarding wind velocity, wind direction, ship-motion direction; we can find out the best wing-sail position and fuel saving for commercial ships. We have calculated net fuel saving in certain international shipping routes, for instance, from Mumbai in India to Durban in South Africa. Our estimates show that about 8.3% diesel fuel can be saved by utilizing the wind. We are also developing an experimental model of the ship employing airfoils (small scale wingsail) and going to test it in National Wind Tunnel Facility in IIT Kanpur in order to develop a control mechanism for a system of airfoils.Keywords: Commercial ships, Wind diesel hybrid system, Wing-sail, Wind direction, Wind velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3965571 Hybrid Optimization of Emission and Economic Dispatch by the Sigmoid Decreasing Inertia Weight Particle Swarm Optimization
Authors: Joko Pitono, Adi Soeprijanto, Takashi Hiyama
Abstract:
This paper present an efficient and reliable technique of optimization which combined fuel cost economic optimization and emission dispatch using the Sigmoid Decreasing Inertia Weight Particle Swarm Optimization algorithm (PSO) to reduce the cost of fuel and pollutants resulting from fuel combustion by keeping the output of generators, bus voltages, shunt capacitors and transformer tap settings within the security boundary. The performance of the proposed algorithm has been demonstrated on IEEE 30-bus system with six generating units. The results clearly show that the proposed algorithm gives better and faster speed convergence then linearly decreasing inertia weight.
Keywords: Optimal Power Flow, Combined Economic Emission Dispatch, Sigmoid decreasing Inertia Weight, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688570 An Investigation on the Effects of Injection Spray Cone on Propulsive Droplets in a Duct
Authors: M. Mojtahedpoor
Abstract:
This paper addresses one important aspect of combustion system analysis, the spray evaporation and dispersion modeling. In this study we assume an empty cylinder which is as a simulator for a ramjet engine and the cylinder has been studied by cold flow. Four nozzles have the duties of injection which are located in the entrance of cylinder. The air flow comes into the cylinder from one side and injection operation will be done. By changing injection velocity and entrance air flow velocity, we have studied droplet sizing and efficient mass fraction of fuel vapor near and at the exit area. We named the mass of fuel vapor inside the flammability limit as the efficient mass fraction. Further, we decreased the initial temperature of fuel droplets and we have repeated the investigating again. To fulfill the calculation we used a modified version of KIVA-3V.Keywords: Ramjet, droplet sizing, injection velocity, air flowvelocity, efficient mass fraction..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395569 Optimal Feedback Linearization Control of PEM Fuel Cell
Authors: E. Shahsavari, R. Ghasemi, A. Akramizadeh
Abstract:
This paper presents a new method to design nonlinear feedback linearization controller for PEMFCs (Polymer Electrolyte Membrane Fuel Cells). A nonlinear controller is designed based on nonlinear model to prolong the stack life of PEMFCs. Since it is known that large deviations between hydrogen and oxygen partial pressures can cause severe membrane damage in the fuel cell, feedback linearization is applied to the PEMFC system so that the deviation can be kept as small as possible during disturbances or load variations. To obtain an accurate feedback linearization controller, tuning the linear parameters are always important. So in proposed study NSGA (Non-Dominated Sorting Genetic Algorithm)-II method was used to tune the designed controller in aim to decrease the controller tracking error. The simulation result showed that the proposed method tuned the controller efficiently.
Keywords: Feedback Linearization controller, NSGA, Optimal Control, PEMFC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247568 Drop Impact on a Vibrated, Heated Surface: Towards a Potential New Way of Elaborating Nuclear Fuel from Gel Microspheres
Authors: Méryl Brothier, Dominique Moulinier, Christophe Bertaux
Abstract:
The gel-supported precipitation (GSP) process can be used to make spherical particles (spherules) of nuclear fuel, particularly for very high temperature reactors (VHTR) and even for implementing the process called SPHEREPAC. In these different cases, the main characteristics are the sphericity of the particles to be manufactured and the control over their grain size. Nonetheless, depending on the specifications defined for these spherical particles, the GSP process has intrinsic limits, particularly when fabricating very small particles. This paper describes the use of secondary fragmentation (water, water/PVA and uranyl nitrate) on solid surfaces under varying temperature and vibration conditions to assess the relevance of using this new technique to manufacture very small spherical particles by means of a modified GSP process. The fragmentation mechanisms are monitored and analysed, before the trends for its subsequent optimised application are described.Keywords: Microsphere elaboration, nuclear fuel, droplet impact , gel-supported precipitation process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589567 The Improved Biofuel Cell for Electrical Power Generation from Wastewaters
Authors: M. S. Kilic, S. Korkut, B. Hazer
Abstract:
Newly synthesized Polypropylene-g-Polyethylene glycol polymer was first time used for a compartment-less enzymatic fuel cell. Working electrodes based on Polypropylene-g-Polyethylene glycol were operated as unmediated and mediated system (with ferrocene and gold/cobalt oxide nanoparticles). Glucose oxidase and bilirubin oxidase was selected as anodic and cathodic enzyme, respectively. Glucose was used as fuel in a single-compartment and membrane-less cell. Maximum power density was obtained as 0.65 nW cm-2, 65 nW cm-2 and 23500 nW cm-2 from the unmediated, ferrocene and gold/cobalt oxide modified polymeric film, respectively. Power density was calculated to be ~16000 nW cm-2 for undiluted wastewater sample with gold/cobalt oxide nanoparticles including system.
Keywords: Bilirubin oxidase, Enzymatic fuel cell, Glucose oxidase, Nanoparticles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2434566 Indoor Air Pollution of the Flexographic Printing Environment
Authors: Jelena S. Kiurski, Vesna S. Kecić, Snežana M. Aksentijević
Abstract:
The identification and evaluation of organic and inorganic pollutants were performed in a flexographic facility in Novi Sad, Serbia. Air samples were collected and analyzed in situ, during 4-hours working time at five sampling points by the mobile gas chromatograph and ozonometer at the printing of collagen casing. Experimental results showed that the concentrations of isopropyl alcohol, acetone, total volatile organic compounds and ozone varied during the sampling times. The highest average concentrations of 94.80 ppm and 102.57 ppm were achieved at 200 minutes from starting the production for isopropyl alcohol and total volatile organic compounds, respectively. The mutual dependences between target hazardous and microclimate parameters were confirmed using a multiple linear regression model with software package STATISTICA 10. Obtained multiple coefficients of determination in the case of ozone and acetone (0.507 and 0.589) with microclimate parameters indicated a moderate correlation between the observed variables. However, a strong positive correlation was obtained for isopropyl alcohol and total volatile organic compounds (0.760 and 0.852) with microclimate parameters. Higher values of parameter F than Fcritical for all examined dependences indicated the existence of statistically significant difference between the concentration levels of target pollutants and microclimates parameters. Given that, the microclimate parameters significantly affect the emission of investigated gases and the application of eco-friendly materials in production process present a necessity.
Keywords: Flexographic printing, indoor air, multiple regression analysis, pollution emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1307565 Application of Subversion Analysis in the Search for the Causes of Cracking in a Marine Engine Injector Nozzle
Authors: Leszek Chybowski, Artur Bejger, Katarzyna Gawdzińska
Abstract:
Subversion analysis is a tool used in the TRIZ (Theory of Inventive Problem Solving) methodology. This article introduces the history and describes the process of subversion analysis, as well as function analysis and analysis of the resources, used at the design stage when generating possible undesirable situations. The article charts the course of subversion analysis when applied to a fuel injection nozzle of a marine engine. The work describes the fuel injector nozzle as a technological system and presents principles of analysis for the causes of a cracked tip of the nozzle body. The system is modelled with functional analysis. A search for potential causes of the damage is undertaken and a cause-and-effect analysis for various hypotheses concerning the damage is drawn up. The importance of particular hypotheses is evaluated and the most likely causes of damage identified.
Keywords: Complex technical system, fuel injector, function analysis, importance analysis, resource analysis, sabotage analysis, subversion analysis, TRIZ.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1188564 Effects of Injection Velocity and Entrance Airflow Velocity on Droplets Sizing in a Duct
Authors: M. M. Doustdar , M. Mojtahedpoor
Abstract:
This paper addresses one important aspect of combustion system analysis, the spray evaporation and dispersion modeling. In this study we assume an empty cylinder which is as a simulator for a ramjet engine and the cylinder has been studied by cold flow. Four nozzles have the duties of injection which are located in the entrance of cylinder. The air flow comes into the cylinder from one side and injection operation will be done. By changing injection velocity and entrance air flow velocity, we have studied droplet sizing and efficient mass fraction of fuel vapor near and at the exit area. We named the mass of fuel vapor inside the flammability limit as the efficient mass fraction. Further, we decreased the initial temperature of fuel droplets and we have repeated the investigating again. To fulfill the calculation we used a modified version of KIVA-3V.Keywords: Ramjet, droplet sizing, injection velocity, air flow velocity, efficient mass fraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864563 The Influence of Variable Geometrical Modifications of the Trailing Edge of Supercritical Airfoil on the Characteristics of Aerodynamics
Authors: P. Lauk, K. E. Seegel, T. Tähemaa
Abstract:
The fuel consumption of modern, high wing loading, commercial aircraft in the first stage of flight is high because the usable flight level is lower and the weather conditions (jet stream) have great impact on aircraft performance. To reduce the fuel consumption, it is necessary to raise during first stage of flight the L/D ratio value within Cl 0.55-0.65. Different variable geometrical wing trailing edge modifications of SC(2)-410 airfoil were compared at M 0.78 using the CFD software STAR-CCM+ simulation based Reynolds-averaged Navier-Stokes (RANS) equations. The numerical results obtained show that by increasing the width of the airfoil by 4% and by modifying the trailing edge airfoil, it is possible to decrease airfoil drag at Cl 0.70 for up to 26.6% and at the same time to increase commercial aircraft L/D ratio for up to 5.0%. Fuel consumption can be reduced in proportion to the increase in L/D ratio.
Keywords: L/D ratio, miniflaps, mini-TED, supercritical airfoil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 996562 Reduction of Plutonium Production in Heavy Water Research Reactor: A Feasibility Study through Neutronic Analysis Using MCNPX2.6 and CINDER90 Codes
Authors: H. Shamoradifar, B. Teimuri, P. Parvaresh, S. Mohammadi
Abstract:
One of the main characteristics of Heavy Water Moderated Reactors is their high production of plutonium. This article demonstrates the possibility of reduction of plutonium and other actinides in Heavy Water Research Reactor. Among the many ways for reducing plutonium production in a heavy water reactor, in this research, changing the fuel from natural Uranium fuel to Thorium-Uranium mixed fuel was focused. The main fissile nucleus in Thorium-Uranium fuels is U-233 which would be produced after neutron absorption by Th-232, so the Thorium-Uranium fuels have some known advantages compared to the Uranium fuels. Due to this fact, four Thorium-Uranium fuels with different compositions ratios were chosen in our simulations; a) 10% UO2-90% THO2 (enriched= 20%); b) 15% UO2-85% THO2 (enriched= 10%); c) 30% UO2-70% THO2 (enriched= 5%); d) 35% UO2-65% THO2 (enriched= 3.7%). The natural Uranium Oxide (UO2) is considered as the reference fuel, in other words all of the calculated data are compared with the related data from Uranium fuel. Neutronic parameters were calculated and used as the comparison parameters. All calculations were performed by Monte Carol (MCNPX2.6) steady state reaction rate calculation linked to a deterministic depletion calculation (CINDER90). The obtained computational data showed that Thorium-Uranium fuels with four different fissile compositions ratios can satisfy the safety and operating requirements for Heavy Water Research Reactor. Furthermore, Thorium-Uranium fuels have a very good proliferation resistance and consume less fissile material than uranium fuels at the same reactor operation time. Using mixed Thorium-Uranium fuels reduced the long-lived α emitter, high radiotoxic wastes and the radio toxicity level of spent fuel.
Keywords: Burn-up, heavy water reactor, minor actinides, Monte Carlo, proliferation resistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1004561 Hybrid RANS-LES Simulation of In-Cylinder Air Flow for Different Engine Speeds at Fixed Intake Flow Pressure
Authors: L. V. Fui, A. Ulugbek, S. S. Dol
Abstract:
The in-cylinder flow and mixture formations are significant in view of today’s increasing concern on environmental issues and stringent emission regulations. In this paper, the numerical simulations of a SI engine at different engine speeds (2000-5000 rpm) at fixed intake flow pressure of 1 bar are studied using the AVL FIRE software. The simulation results show that when the engine speed at fixed intake flow pressure is increased, the volumetric efficiency of the engine decreases. This is due to a richer fuel conditions near the engine cylinder wall when engine speed is increased. Significant effects of impingement are also noted on the upper and side walls of the engine cylinder. These variations in mixture formation before ignition could affect the thermodynamics efficiency and specific fuel consumption that would lead to a reduced engine performance.
Keywords: AVL FIRE, fuel mass, IC engine, LES, RANS, turbulent intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419560 Steady State and Accelerated Decay Rate Evaluations of Membrane Electrode Assembly of PEM Fuel Cells
Authors: Yingjeng James Li, Lung-Yu Sung, Andrew S. Lin, Huan-Jyun Ciou
Abstract:
Durability of Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells was evaluated in both steady state and accelerated decay modes. Steady state mode was carried out at constant current of 800mA/cm2 for 2500 hours using air as cathode feed and pure hydrogen as anode feed. The degradation of the cell voltage was 0.015V after such 2500 hrs operation. The degradation rate was therefore calculated to be 6uV/hr. Continuously Vigorous fluctuation of the cell voltage, which was switched between OCV and 0.2V, was employed for the accelerated decay mode. No obvious change in performance of the MEA was observed after 10000 cycles of such operation.Keywords: Durability, lifetime, membrane electrode assembly, proton exchange membrane fuel cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171559 Economic Analysis of Domestic Combined Heat and Power System in the UK
Authors: Thamo Sutharssan, Diogo Montalvao, Yong Chen, Wen-Chung Wang, Claudia Pisac
Abstract:
A combined heat and power (CHP) system is an efficient and clean way to generate power (electricity). Heat produced by the CHP system can be used for water and space heating. The CHP system which uses hydrogen as fuel produces zero carbon emission. Its’ efficiency can reach more than 80% whereas that of a traditional power station can only reach up to 50% because much of the thermal energy is wasted. The other advantages of CHP systems include that they can decentralize energy generation, improve energy security and sustainability, and significantly reduce the energy cost to the users. This paper presents the economic benefits of using a CHP system in the domestic environment. For this analysis, natural gas is considered as potential fuel as the hydrogen fuel cell based CHP systems are rarely used. UK government incentives for CHP systems are also considered as the added benefit. Results show that CHP requires a significant initial investment in returns it can reduce the annual energy bill significantly. Results show that an investment may be paid back in 7 years. After the back period, CHP can run for about 3 years as most of the CHP manufacturers provide 10 year warranty.
Keywords: Combined Heat and Power, Clean Energy, Hydrogen Fuel Cell, Economic Analysis of CHP, Zero Emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066558 Photovoltaic Array Sizing for PV-Electrolyzer
Authors: Panhathai Buasri
Abstract:
Hydrogen that used as fuel in fuel cell vehicles can be produced from renewable sources such as wind, solar, and hydro technologies. PV-electrolyzer is one of the promising methods to produce hydrogen with zero pollution emission. Hydrogen production from a PV-electrolyzer system depends on the efficiency of the electrolyzer and photovoltaic array, and sun irradiance at that site. In this study, the amount of hydrogen is obtained using mathematical equations for difference driving distance and sun peak hours. The results show that the minimum of 99 PV modules are used to generate 1.75 kgH2 per day for two vehicles.Keywords: About four key words or phrases in alphabetical order, separated by commas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752557 A Brief Review on Recent Trends in Alternative Sources of Energy
Authors: Divya S., Jibin Joseph
Abstract:
Alternative energy is any energy source that is an alternative to fossil fuel. These alternatives are intended to address concerns about such fossil fuels. Today, because of the variety of energy choices and differing goals of their advocates, defining some energy types as "alternative" is highly controversial. Most of the recent and existing alternative sources of energy are discussed below
Keywords: Athra Quinone Disulphonic Acid (AQDS), Renewable Methanol (RM), Solid Oxide Fuel Cell (SOFC), Maximum Power Point Tracking (MPPT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552556 Effect of Hydrogen-Diesel Dual Fuel Combustion on the Performance and Emission Characteristics of a Four Stroke-Single Cylinder Diesel Engine
Authors: Madhujit Deb, G. R. K. Sastry, R. S. Panua, Rahul Banerjee, P. K. Bose
Abstract:
The present work attempts to investigate the combustion, performance and emission characteristics of an existing single-cylinder four-stroke compression-ignition engine operated in dual-fuel mode with hydrogen as an alternative fuel. Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels like hydrogen for internal combustion (IC) engines. In this experimental investigation, a diesel engine is made to run using hydrogen in dual fuel mode with diesel, where hydrogen is introduced into the intake manifold using an LPGCNG injector and pilot diesel is injected using diesel injectors. A Timed Manifold Injection (TMI) system has been developed to vary the injection strategies. The optimized timing for the injection of hydrogen was 10^0 CA after top dead center (ATDC). From the study it was observed that with increasing hydrogen rate, enhancement in brake thermal efficiency (BTHE) of the engine has been observed with reduction in brake specific energy consumption (BSEC). Furthermore, Soot contents decrease with an increase in indicated specific NOx emissions with the enhancement of hydrogen flow rate.
Keywords: Diesel engine, Hydrogen, BTHE, BSEC, Soot, NOx.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4477555 Investigation about Mechanical Equipment Needed to Break the Molecular Bonds of Heavy Oil by Using Hydrodynamic Cavitation
Authors: Mahdi Asghari
Abstract:
The cavitation phenomenon is the formation and production of micro-bubbles and eventually the bursting of the micro-bubbles inside the liquid fluid, which results in localized high pressure and temperature, causing physical and chemical fluid changes. This pressure and temperature are predicted to be 2000 atmospheres and 5000 °C, respectively. As a result of small bubbles bursting from this process, temperature and pressure increase momentarily and locally, so that the intensity and magnitude of these temperatures and pressures provide the energy needed to break the molecular bonds of heavy compounds such as fuel oil. In this paper, we study the theory of cavitation and the methods of cavitation production by acoustic and hydrodynamic methods and the necessary mechanical equipment and reactors for industrial application of the hydrodynamic cavitation method to break down the molecular bonds of the fuel oil and convert it into useful and economical products.
Keywords: Cavitation, hydrodynamic cavitation, cavitation reactor, fuel oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 578554 One-Pot Facile Synthesis of N-Doped Graphene Synthesized from Paraphenylenediamine as Metal-Free Catalysts for the Oxygen Reduction Used for Alkaline Fuel Cells
Authors: Leila Samiee, Amir Yadegari, Saeedeh Tasharrofi
Abstract:
In the work presented here, nitrogen-doped graphene materials were synthesized and used as metal-free electrocatalysts for oxygen reduction reaction (ORR) under alkaline conditions. Paraphenylenediamine was used as N precursor. The N-doped graphene was synthesized under hydrothermal treatment at 200°C. All the materials have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS). Moreover, for electrochemical evaluation of samples, Rotating Disk electrode (RDE) and Cyclic Voltammetry techniques (CV) were employed. The resulting material exhibits an outstanding catalytic activity for the oxygen reduction reaction (ORR) as well as excellent resistance towards methanol crossover effects, indicating their promising potential as ORR electrocatalysts for alkaline fuel cells.
Keywords: Alkaline fuel cell, graphene, metal-free catalyst, paraphenylenediamine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741553 Mass Transfer of Paracetamol from the Crosslinked Carrageenan-Polyvinyl Alcohol Film
Authors: Sperisa Distantina, Rieke Ulfha Noviyanti, Sri Sutriyani, Fadilah Fadilah, Mujtahid Kaavessina
Abstract:
In this research, carrageenan extracted from seaweed Eucheuma cottonii was mixed with polyvinyl alcohol (PVA) and then crosslinked using glutaraldehyde (GA). The obtained hydrogel films were applied to control the drug release rate of paracetamol. The aim of this research was to develop a mathematical model that can be used to describe the mass transfer rate of paracetamol from the hydrogel film into buffer solution. The effect of weight ratio carrageenan-PVA (5: 0, 1: 0.5, 1: 1, 1: 2, 0: 5) on the parameters of the mathematical model was investigated also. Based on the experimental data, the proposed mathematical model could describe the mass transfer rate of paracetamol. The weight ratio of carrageenan-PVA greatly affected the amount of paracetamol absorbed in the hydrogel film and the mass transfer rate of paracetamol.Keywords: Carrageenan-PVA, crosslinking, hydrogel, glutaraldehyde, paracetamol, mass transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1101