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Abstract—Fuel consumption (FC) is one of the key factors in 
determining expenses of operating a heavy-duty vehicle. A customer 
may therefore request an estimate of the FC of a desired vehicle. 
The modular design of heavy-duty vehicles allows their construction 
by specifying the building blocks, such as gear box, engine and 
chassis type. If the combination of building blocks is unprecedented, 
it is unfeasible to measure the FC, since this would first r equire the 
construction of the vehicle. This paper proposes a machine learning 
approach to predict FC. This study uses around 40,000 vehicles 
specific a nd o perational e nvironmental c onditions i nformation, such 
as road slopes and driver profiles. A ll v ehicles h ave d iesel engines 
and a mileage of more than 20,000 km. The data is used to investigate 
the accuracy of machine learning algorithms Linear regression (LR), 
K-nearest neighbor (KNN) and Artificial n eural n etworks ( ANN) in 
predicting fuel consumption for heavy-duty vehicles. Performance of 
the algorithms is evaluated by reporting the prediction error on both 
simulated data and operational measurements. The performance of the 
algorithms is compared using nested cross-validation and statistical 
hypothesis testing. The statistical evaluation procedure finds that 
ANNs have the lowest prediction error compared to LR and KNN 
in estimating fuel consumption on both simulated and operational 
data. The models have a mean relative prediction error of 0.3% on 
simulated data, and 4.2% on operational data.

Keywords—Artificial neural networks, fuel consumption, 
machine learning, regression, statistical tests.

I. INTRODUCTION

FUEL consumption (FC) is arguably one of the most

important aspects of heavy-duty vehicles. Customers tend

to weigh in the FC of a vehicle when deciding which vehicle

to buy, since this stands in direct correlation to their fuel

expenses.

Current practices of providing FC estimations of a vehicle

uses simulation tools. One of such primary tools is the

Vehicle Energy Consumption Calculation Tool (VECTO) [1].

It is developed and distributed by the European Union. The

simulation takes around one minute to complete, and is

typically not as exact as the measured FC once the vehicle

is in operation.

Execution time and accuracy provide reasons for defining

an alternative estimation scenario that may be used when

estimating FC. One such approach is to apply machine

learning (ML). ML models are currently recognized for

their potential to more efficiently handle problems in several
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different domains. There are recent studies investigating the

use of machine learning in estimating FC of heavy-duty

vehicles [2]–[4], aircraft [5] and buses [6]. Results of previous

studies see a mean relative prediction error ranging from 4%

to 14% on operational vehicles. No study offers a conclusive

best-performing algorithm.

This study investigates the applicability of ML in estimating

FC of heavy-duty vehicles. The research question is: Within

what error margin can a ML model estimate FC generated

from VECTO simulations and real world measurements of

heavy-duty vehicles? Two separate scenarios are considered:

1) The reproducibility of simulated (VECTO) FC using vehicle

features, and 2) reproducibility of measured FC using vehicle

and operational features.

II. DATA

The dataset contains vehicle features, such as vehicle

mass and engine specification, and operational data such as

measured average fuel consumption and cruise control usage.

The full set of considered vehicle features, their types, and

their sources (operational vs. vehicle) are listed in Table I.

TABLE I
INPUT FEATURES FOR THE MODELS IN ALPHABETICAL ORDER

Variable Discrete (O) Operational data (O)
/Continuous (X) /Vehicle data (X)

Airdrag X X
Average gross train weight X X
Average speed X O
Axle Model O X
Brake frequency X O
Chassis adaptation O X
Corrected Curb Mass X X
Country of purchase O X
Cruise Control usage X O
Engine displacement O X
Engine model O X
Horse power X X
Idling with Power take-off X O
Idling without Power take-off X O
Crusing powertrain ratio X X
Retarder usage X O
Stop frequency per 100km X O
Simulation payload weight X X
Total rolling resistance coefficient X X
Virtual velocity variance X O
Virtual slope average X O
Wheel configuration O X

The dataset for simulated fuel consumption contains 40,789

vehicles. The operational dataset contains almost 80,000
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vehicles, but less than 20,000 have values for all desired

features. The final merged dataset contains 39,001 unique

vehicles.

A. Prediction

For both simulated and real world fuel consumption cases,

the regression value was predicted as the fuel consumption

flow in liters per 100 km. For the estimated data, the target

variable is a floating point value. For the operational data,

the values are recorded by control units in the vehicles. The

control units are sometimes reset due to software upgrades.

The target value is aggregated over the life cycle since the

last occurrence of such a reset, and rounded to the nearest

integer.

III. METHOD

The experiment consists of three phases and is described by

Fig. 1.

Fig. 1 The project process. Gray shapes are confined t o a
software-environment, whereas yellow shapes describe consulting external 

references

The first phase is about data collection and preprocessing.

The second phase includes comparison of different machine

learning algorithms where two baseline algorithms: Linear

Regression (LR) [7, ch. 3] and K-nearest neighbor regression

(KNN) [7, ch. 2]; and two advanced regression models:

Artificial Neural Networks (ANN) [8, ch. 1] using Stochastic

Gradient Descent (SGD) [9, ch 5.9], and ADAM-optimizer

[10] were considered. Both ANN algorithms were considered

as fully connected multi-layer perceptrons (MLP). Algorithm

and model comparison was done using a variant of

cross-validation known as Nested Cross-validation [11] on the

dataset. If a best-performing algorithm is determined in the

evaluation, a final model is trained and evaluated using the

full dataset.

A. Data Preprocessing

The data was preprocessed such that all categorical features

were one-hot encoded, and all continuous features were

normalized according to the normal score of the feature

(X−μ
σ ). Up to 1 percentile of upper and lower outliers were

clipped for all operational features. Only vehicles produced in

2018, with diesel engines and a mileage of more than 20,000

km were used. All vehicles with missing values for any of

the considered input features were removed. This resulted in

34,712 vehicles in the VECTO scenario, and 15,976 vehicles

in the operational scenario.

B. Evaluating and Comparing Models
For evaluation of the ML models nested cross-validation

(CV) was used in preference over normal 5- or 10-fold CV

because it accounts for more reliable estimates of the true

model error, as shown by Varma and Simon [11].

The nested CV approach consists of two nested

cross-validation loops, where the inner loop is used to define

model hyperparameters. The outer loop then evaluates the

model with the best performing hyperparameters from the

inner loop. The 5x2 nested CV configuration was used,

meaning 5-fold CV in the outer loop and 2-fold CV in the

inner loop.

The full dataset was split into 80% training data and 20%

test data. The 5x2 nested CV was applied to the training set

and resulted in five error measurements for each algorithm.

When error distributions had been determined, the

Friedman-statistic [12] was calculated, in order to determine

whether the performance difference between the algorithms

is statistically significant. The threshold used for rejecting

the null hypothesis on the Friedman statistic was α =
0.05. If the null-hypothesis was rejected, a post-hoc analysis

was performed to determine which performance differences

are significant. The post-hoc analysis applied Li’s two-step

rejection procedure [13] with the Kolmogorv-Smirnov

2-sample test [14]. Due to the small sample size of the error

distributions, in relation to the evaluation procedure of the

Kolmogorov-smirnov method the post-hoc analysis gave more

slack in rejecting H0 by using a threshold of α = 0.10.

After post-hoc analysis, the algorithms were ranked

according to their performance. The ranking procedure ranks

all error measurements compared to each other. In the case

of four algorithms and 5-fold outer CV this yielded a total

of 20 measurements. The ranking was then determined by

ranking the mean ranks of each model. This is equivalent to

the Average Rank procedure presented by Brazdil and Soares

[15]. If post-hoc analysis found a statistically significant

best-ranking model, this model was then trained on the full

training set and evaluated on the original test set. If an ANN

was found to be the best model, it was trained for 1000 epochs

as the final model.

C. Algorithms and Hyperparameters
The considered hyperparameters for the algorithms are

presented in Table II.

In the algorithm comparison phase a constant number of 200

epochs was used when training the ANNs. An early stopping

technique was also used, to ensure that the error decreased

by at least 10−4 error units during 10 consecutive epochs,

otherwise training was stopped. The considered activation

functions were Relu (max(0, x)) and sigmoid ( 1
1+e−x ).

IV. RESULT

The following sections describe the results for the

simulation and operational data scenarios (IV-A and IV-C) as

well as the final model results of both scenarios (IV-B and

IV-D).
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TABLE II
CONSIDERED HYPERPARAMETERS FOR DIFFERENT ALGORITHMS

Algorithm Hyperparameter
KNN k (neighbors)

u (inverted distance weight [16])
MLP w/ SGD hidden nodes

hidden layers
activation function
learning rate
momentum
l2-regularization (weight-decay)

MLP w/ ADAM hidden nodes
hidden layers
activation function
learning rate
l2-regularization (weight-decay)
γ (first adaptive moment)
β (second adaptive moment)

Fig. 2 Statistical evaluation procedure for the four algorithms in the VECTO 
scenario

A. Vecto Estimation

The error distributions resulting from the nested CV

procedure had a median error of 0.0593, 0.0585, 0.0501

and 0.0312 for LR, KNN, SGD and ADAM, respectively.

The ADAM-algorithm had a non-overlapping lowest error

population compared to the other algorithms.

Results from the statistical analysis procedure is shown in

Fig. 2. Using Li’s 2-step procedure, the null hypotheses are not

rejected in the first step, since Pm = 0.87 > 0.10 in contrast

to the second step where p-value ≤ 0.0141.

From the results presented in Fig. 2 it is clear that all null

hypotheses associated with the ADAM-models can be rejected,

yielding a conclusive best model.

Fig. 3 Prediction accuracy of final model for t he VECTO estimation 
scenario, using the full training set for training. The predicted fuel 

consumption is shown as a function of the true fuel consumption value

B. Final VECTO Model

The best ADAM model found after iterative hyperparameter

searches is defined according to Table III. The performance of

the ADAM model is presented in Table IV. Results have been

rounded to a 3-digit precision. The root mean squared error

(RMSE) is 0.160, the mean relative error (MRE) is 0.3% and

the root mean squared relative error (RMSErel) is 0.5%. The

prediction error on the 95th percentile (abbreviated 95%) of

data is 0.9%.

TABLE III
FINAL SELECTED ADAM-CONFIGURATION FOR VECTO ESTIMATION

Hidden Learning
layers Activation l2 regularization γ β rate
(120, 120) sigmoid 0 0.8 0.99 0.0075

TABLE IV
PERFORMANCE FOR THE FINAL ADAM MODEL

MSE RMSE MRE RMSErel 95% 99% 99.9%
0.026 0.160 0.003 0.005 0.009 0.017 0.030

Fig. 3 presents the prediction power of the

ADAM-algorithm on the test set. The plot shows the

predicted value as a function of the true value, a completely

accurate prediction set would thus lie on the light blue line

with no deviation. The majority of points lie in the two

percent error margin, and no point lies outside the six percent

error margin.

C. Operational Estimation

Application of the 5x2 nested CV on the train-set yielded

error distributions with median values of 4.66, 5.67, 4.03, and

4.06 for LR, KNN, SGD and ADAM, respectively.

The statistical significance evaluation procedure is presented

in the left plot in Fig. 4. Step two in Li’s rejection procedure

yields to no null hypotheses to be rejected, since Pm in this

scenario is 1.0 for the ADAM-SGD pair.

The two algorithms SGD and ADAM are both neural

networks. Focusing on SGD as the preferred ANN-algorithm,
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Fig. 4 Statistical evaluation procedure, including (left) and excluding (right) 
ADAM measurements

the statistical analysis is performed excluding measurements

for ADAM. This yielded a statistically significant difference at

the 10% level, described by the right side of Fig. 4. Since all

null hypotheses are rejected in the first step of Li’s procedure,

a statistically significant ranking between SGD, KNN and LR

is given.

D. Final Operational Model
The final selected best model trained on the full training

set and evaluated on the test set is described by Table V. The

resulting performance of the model is presented in Table VI.

The model has a RMSE value of approximately 1.714, a mean

relative error of 4.2%, and a relative error of 11.2% on the 95th

percentile.

TABLE V
FINAL SELECTED SGD-CONFIGURATION FOR OPERATIONAL ESTIMATION

Hidden Learning
layers Activation l2 regularization momentum rate
(70) sigmoid 0.1 0.775 0.02

TABLE VI
PERFORMANCE FOR THE SGD ALGORITHM TRAINED ON THE FULL

TRAIN SET, AND EVALUATED ON THE TEST SET

MSE RMSE MRE RMSErel 95% 99% 99.9%
2.939 1.714 0.042 0.057 0.112 0.167 0.272

Fig. 5 depicts the prediction power of the final model on the

test. The distribution of the points in the top-most figures show

that the true values have been rounded to the nearest integer.

Only a few points lie outside the 20% margin, in accordance

with the results presented in Table VI.

V. DISCUSSION AND CONCLUSION

In this study we used vehicle and environmental data

in three different machine learning approaches to predict

the fuel consumption of the vehicles. From the results we

found that ANNs perform better than KNN and LR on the

given regression problem. In the VECTO scenario the ADAM

Fig. 5 Prediction accuracy for the final SGD model in the operational 
estimation scenario

algorithm performed best, while in the operational scenario

the two ANN algorithms performed equally.

For the final VECTO estimation model, we saw a test

MSE of 0.026. Comparing this with the median nested CV

error of the ADAM-algorithm (section IV-A), it seems that

training for 1000 epochs instead of 200 does not improve the

performance by more than a few percent. The final model had

a relative error of less than 1% on the 95th percentile, and

an absolute mean relative error of roughly 0.3% on average,

which should be considered a good estimation of the simulated

fuel consumption.

Comparing Figs. 3 and 5 we find that the predictions on the 
operational scenario are worse by a factor of approximately 10 
compared to the VECTO estimations. It is likely that 
there is not enough information in the input features of the 
operational scenario available to predict the aggregated fuel 
consumption value.

This study offers an evaluation framework for finding

a best performing algorithm using nested cross-validation

alongside statistical hypothesis testing. The testing procedure

used the Friedman test as a multi-comparison test and Li’s

two-step rejection procedure with the Kolmogorov-smirnov

2-sample test to distinguish a best performing algorithm.

Once a best-performing algorithm is chosen, it is tuned for

hyperparameters and evaluated on the full training set. Using

the nested CV and statistical hypothesis testing provides a

decision as to which model (if there is any) is best suited for

the problem at hand. The step-wise procedure can also be used

effectively in an industry context when deciding which model

to put into production for a given problem.

The algorithm evaluation procedure in this report made use

of statistical analysis tests, such as the Friedman test and Li’s

two-step rejection procedure. The Friedman test is typically

used when assessing m models on k datasets, where the

datasets are assumed to be independent. In this study the k
datasets are drawn from the five outer folds of the nested

CV procedure. While each validation fold is distinct, since

no datapoint is present in more than a single fold, the trained

models have overlapping train sets. This results in the error
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measurement on a fold not being completely independent from

another fold, since the same 100 ∗ k−2
k % of the data has been

used when training both models.

The statistical analysis was done using the Friedman test,

it might be worth consulting other statistical evaluation

approaches further to provide a more complete picture of the

case. [7], [11], [12], [17], [18].

Concerning the post-hoc analysis, Li’s two-step rejection

procedure was used. Consulting Trawinski, Smetek, Telec,

et al., it may however be preferable to use a different

post-hoc strategy since the evaluation in their study concerned

NxN hypothesis testing. I.e. all pairs of algorithms are

compared. Trawinski, Smetek, Telec, et al. only apply Li’s

procedure when comparing Nx1 tests. In this study, this would

identify one algorithm as a ”control” algorithm, and remaining

algorithms as ”test” algorithms to compare with.

A. Conclusions

From our experiments, we state that 1) Artificial Neural

networks perform better compared to Linear Regression and

K-nearest neighbor. 2) The VECTO estimation scenario can

predict fuel consumption error with good accuracy. 3) The

operational estimation scenario can predict fuel consumption

error accurately, with an error roughly 10 times worse than for

the VECTO scenario. We conclude that ANNs can be useful

for providing fast and reliable estimates of fuel consumption.

B. Future Work

Further research in this area could be to compare different

statistical testing methods to determine other possible null

hypothesis rejection procedures within the current case setting.

As discussed by other authors [11], [18], the paired t-test

is generally considered to perform poorly with a high type

2 error. It would therefor be interesting to compare it with

other non-parametrical statistical tests. Other possibilities on

evaluating the true model error include bootstrap [7, ch. 5.2]

sampling of the sample errors.

The architectures of ANNs and statistical evaluation of

machine learning models would be relevant to investigate

further. One could consider e.g. establishing deep learning

architectures and apply them to fuel consumption. It is

however likely that this requires more high resolution data

to be useful.
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